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Summary of Main Ideas

» Rowmotion and its various liftings are maps of longstanding interest in dynamical algebraic combinatorics, which have been
studied for their periodicity, homomesy, cyclic sieving, and resonance.

» We lift antichain rowmotion to the piecewise-linear and birational realms, in parallel with the construction for order ideals.

» We construct an explicit bijection between the two (antichain and order) birational toggle groups, lifting a map from the
combinatorial realm. This yields an equivariant bijection between BAR-motion and BOR-motion. In particular, BAR-motion
has the same order as BOR-motion.

» Antichain rowmotion on the poset |a] x |b| rotates the Stanley—Thomas word, proving fiber homomesy [PR15]. We define a
birational lifting of the Stanley—Thomas word to prove a fiber homomesy holds at the birational level as well.

» Equality of expressions proven in the birational realm imply the corresponding results in the piecewise-linear and combinatorial
realms.

Rowmotion in the Combinatorial Realm

Products of Two Chains Posets

The posets [2] x [2] and [2] x
running examples.

Combinatorial rowmotion is a particular permutation of the set of order
ideals 7 (P) of a finite poset P or of the set of antichains A(P) of P. It is

. . , o o 3] serve as
studied for 1ts remarkable properties (periodicity, homomesy, cyclic sieving,

resonance) on certain families of posets (especially products of chains and (2,3)
root posets). It was first studied as a map on A(P) by Brouwer and N
chrijver [BS74], and goes by several names; in recent literature, the name NG Nl
“rowmotion,” due to Striker and Williams [SW12] (who summarize the (2,1) (1,2) (2,1) (1,2)
history), has stuck. \(1 1)/ \(1 1 )/

Definitions: Rowmotion and Transfer Maps

We follow the notation of Einstein and Propp [EP18] to define natural bijections between the sets 7 (P) of all order ideals of
P, F(P) of all order filters of P, and A(P) of all antichains of P.

» The map O : 2F — 2F where ©(S) = P\ S is the complement of S (sending order ideals to order filters and vice versa).

» The up-transfer A : 7(P) — A(P), where A([) is the set of maximal elements of /. For an antichain A € A(P),
AN A)={xe P:x<yforsomeyec A}

» The down-transfer V : F(P) — A(P), where V(F) is the set of minimal elements of F. For an antichain A € A(P),
VY A)={xeP:x>yforsomeyc A}

Order ideal rowmotion is the map p; : J(P) — J(P) given by the composition p; = A~ o V 0 ©.

Antichain rowmotion is the map p4 : A(P) — A(P) given by the composition p4 = Vo © o AL
Example of Rowmotion as 3-Step Processes (P = 2] x [2])

In each step, the elements of the subset of the poset are given by the filled-in circles.
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Generalizing Antichain Rowmotion to Chain Polytopes and Birational Labelings

For a poset P, Stanley’s chain polytope C(P) is the set of |0, 1]-node-labelings such that the sum of the labels along any chain is at
most 1 [Sta86]. We extend rowmotion on A(P) (the vertices of C(P)) to all of C(P) [EP18, Jos19].

The Poset P Chain Polytope Rowmotion [EP18, Jos19]

We define p¢ : C(P) — C(P) as the composition pc = V 0 © o A~! where
> (Of)(0) = 1-/(v), A
> (Vf)(@) = f(x) — max f(y) (withf (0) =0),

> (A7) (x) :maX{f()’i) +f )+ ) i x =y <<y < < < 1}-
The notations y > x and y < x indicate covering relations in P.

So that multisets in the definitions
(right) are nonempty, we extend the
poset P to P by adjoining a minimal
element 0 and maximal element 1.

Piecewise-Linear to Birational Birational Antichain Rowmotion [EP18]

Let K¥ denote the set of node-labelings of P with elements of a field K. We define
birational antichain rowmotion (BAR-motion) as the birational map

BAR : K --» K? given by BAR = V 0 © o A~! where
> (6f)) = &

> (Vf)(x) = L2 (with f (6) — 1),

> (AT)(x) = X {F0F02) - Fle) < x

In [GR14, EP18, MR 19] the extension of order ideal rowmotion to Stanley’s order polytope, and its birational lifting, have been
well-studied. BAR-motion comes from the same philosophy, but starting with antichain rowmotion instead.

We lift to the birational realm, by
“detropicalizing” the operations
through the following replacements.

Note that C is just a generic constant
in the field K.

max |+ | — nx |01
Replace with| + | - |/ x" 1|C

X

:)’1<)’2<°'°<Yk<1}-

Chain Polytope Rowmotion Example Birational Antichain Rowmotion Example
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Birational Toggles

Combinatorial rowmotion on order ideals or on antichains can be described either as the composition of three maps, or a
composition of simple involutions called toggles [CF93, Str18, Jos19]. This lifts to the birational realm, and birational order
toggles have been studied since around 2013. Birational antichain toggles are newly defined, as Einstein and Propp only studied
BAR-motion in terms of transfer maps.

Birational Order Toggles [EP18, GR14] Birational Antichain Toggles (J.—R.)

For e € P, the birational order toggle at ¢ is the For e € P, the birational antichain toggle at e is the rational map

birational map T, : K” --+ K” given by 7, : KP -5 K® given by
(flx) ifxAe , C
)= oS SRURTRSED D R R R
o ¥ & SV T (1, eMCL(P)
\ YEP y>x \ g(x) if x # e

where we set f (6) = landf (/1\) = C.

where MC,(P) is the set of all maximal chains of P through e.

Definition/Theorem [EP18] Theorem (J.—R.): BAR-motion is a Composition of Toggles

Let (x1, x2, ..., x,) be any linear extension of P. The
birational lift of order ideal rowmotion, herein called
birational order rowmotion (BOR-motion), is
BOR=T1,T,---T, =0oA1oV.

Let (x1, x2, . ..,X,) be any linear extension of a finite poset P. Then
BAR = 7, - - - 7y, 7y,. Notice that the order of the poset elements in the
composition of toggles 1s the opposite of that of BOR-motion (see left).

Example of BAR-motion as a Composition of Toggles

Z Z Z py
/N /N / N RN RN
X y M X y T(2,1 w(x+y y T(1,2 w(x+y) W(xy+Y) T(2,2 w(x+y) W(xy+Y)
N/ N /S N/ N /S N /S
" C C C C
w(x+y)z wz(x+y)z wz(x+y)z wz(x+y)z
» To apply the toggle 7(; ;), we consider the two maximal chains through (1, 1).
> (1,1) < (2,1) < (2,2) with product of labels wxz
> (1,1) < (1,2) < (2,2) with product of labels wyz
Thus 7(; ;) changes the label at (1, 1) to sziwyz = W(xiy)z.
» Next we apply the toggle 7 ;). The only maximal chain through (2,1)is (1,1) < (2,1) < (2,2) with product of labels

xz. Thus 7, 1) changes the label at (2,1)to C / ( xz) — vy
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Explicit Isomorphism Between Antichain and Order Birational Toggle Groups

We have an isomorphism from the birational antichain Example on P = 2] x [3]

toggle group BTog,(P) generated by {7, : ¢ € P} and the .

birational order toggle group BTog,(P) generated by / ‘ . T

{T, : e € P}. The isomorphism is given by 7, — 7. with X Y 0o Al < =

inverse given by 7, — T,. v 7N » - e DNe”Z
N o VxZ N /w(x+y)z

For e € P, we define the following.

u(vx+wx+wy)z

» Let T) € BTog, (P) by T} == To,Te,  * * Te,TeTe,Tey * * * Teps T2 |
where e, . . ., e, are the elements of P covered by e. (If -
e 1s a minimal element of P, then £ = 7,.) RN :
X
» Letn, € BTog,(P) by n, :== Ty,Ty, - - - T, where NS
(x1,X2,...,X¢) is a linear extension of the subposet sz\ y(wy)z
{xeP:x<e}of P "
» Let 7' :=n,T.n, ' € BTog,(P). T22) | T(22)
Z
Theorem (J.—R.) s y)/ N
Y
. . VXFWX+W
Let e € P. The diagrams below commute on the domains c X c
in which the maps are defined. maz )
P Ie P p.¢ P :
K& e K K _______ K (2,1) (12)l
A WA AT LA z ¢
KP KP KP KP vw(x—b{ N y 0o A1 C (vx—l—war/Wy) N C
i Vx4 wx-Hwy oA vw(x+x)z vz
0 P P@ 0 P P@ x(vxithwy) W(Hy/)(VH)WH(W ; ) L/ x{( i)/
------------------ w(x—+ VX+WX+WY)+vw(x+ VX W(XTY)Z
K T, K K e K y L /y( Y y Z N ) > y

€ u
u(vx+wx+wy)z

Homomesy and Periodicity for BAR-motion

On a general poset P, birational rowmotion usually has infinite order. However, surprisingly for certain “nice” posets such as

la] x |b], as well as types A and B positive root posets, birational rowmotion has the same small order as combinatorial rowmotion.
Grinberg and Roby [GR14] proved that BOR*" is the identity on the poset P = [a] x [b]. Since BOR = V! 0 BAR o V, we have
that BAR“"™ is also the identity.

Let S be a collection of combinatorial objects, and f : S — K a “statistic” on S. We call f homomesic with respect to an
invertible action m : § — § if the (arithmetic) average of f over every m-orbit is the same [PR15]. A particular instance of
homomesy with respect to p4 on the poset P = [a| x |b] is in terms of fibers.

Definition of Fibers in |[a] X |b]

Fix a,b € Z*. For 1 < k < a, the subset {(k,¢) : 1 < ¢ < b} of |a] x [b] is called the kth positive fiber. For 1 < ¢ < b, the
subset {(k, /) : 1 < k < a} of |a] x |b] is called the /th negative fiber.

Theorem (Propp—-R. [PR15])

The statistics p; : A(P) — Z and n; : A(P) — Z where p;(A) (resp. n;(A)) is 1 if A has an element in the ith positive fiber
(resp. negative fiber) and 0 otherwise are homomesic with average b/(a + b) for p; and a/(a + b) for n; on any orbit. As the
cardinality of an antichain can be expressed as p; + p, + - - - + p,, it follows that cardinality on A(P) is homomesic with
average ab/(a + b).

Each antichain A € A([a] x [b]) has an associated (a + b)-tuple w(A), called the Stanley-Thomas word. The proof of the above
theorem relies on the fact that applying p 4 cyclically rotates the the Stanley—Thomas word given by

(1 if 1 <i < aandA has an element in the ath positive fiber,
wi=< 1 ifa+1<i<a+bandA has NO element in the (i — a)th negative fiber,

\ —1 otherwise.

Orbits of p 4 on P = 2] x |2| and Stanley—Thomas Words

The symbol :ll means to repeat, so p 4 has order 4. Below each labeling 1s its Stanley—Thomas word and cardinality.

O O O O

ST word: —1,—-1,1,1) (1,—1,—-1,1) (1,1,—1,—1) —1,1,1,—-1)

cardinality: O+O—O O+1=1 1+1=2 1+O:1 AVG: 054+ 05 =1
ST word: (1,—1,1,-1) —1,1,—-1,1)
cardinality: 1+0=1 O +1=1 AVG:0.5+05 =1

Birational Stanley—Thomas Word

Leta,b € Z*, P = [a] x [b], and g € K”. The Stanley-Thomas word ST, is the (a + b)-tuple

ST, (i) g(i, l)g(i 2)---g(i,b) if1 <i<a,
C/(g(l,i—a)g2,i—a)---gla,i—a)) ifa+1<i<a+b.
BAR-motion Orbit on 2] x |2
xy C
< x+y W wty)z
7\ 7\ 7\ / \
Y y BAR  w(xty) wi+y)  BAR C @ BAR  (xh))z (+y)z2  BAR e | |
— X y — wyz WXZ — = y —
N/ N/ N/ N/
C A
" w(x+y)z < Xty
STword: (w,x2, &, §) (&wyxz, £) (€ wy,x2) (32,5, €, wy)

We have a birational analogue of fiber homomesy below. In the birational setting, to avoid dealing with taking nth roots, this
manifests itself as certain products across an orbit equaling a fixed constant, independent of the initial labels.

Theorem (J.—R.): Fiber Homomesy for BAR-motion

Let P = [a] x [b]. For a labeling g € KF, STgar(g)(i) = ST,(i — 1) for 2 < i < a+ b and STgag(g)(1) = ST(a + b). So,
a+b—1
]| BAR™g)(k, 1)(BAR"g)(k,2) - - - (BAR™g)(k,b) = C” for I < k < a, and
m=0
a+b—1
]| BAR™g)(1,0)(BAR™g)(2,0)- - - (BAR™g)(a, () = C“for 1 < { < b.
m=0

The birational homomesy implies the corresponding result in the piecewise linear realm. In the example orbit below of chain

polytope rowmotion, note that the average “cardinality” (sum of labels) is 5=5 +2 = 1, as with antichain rowmotion.

03 0.1 0. 2\ |
7\ N \

0.1 04 . 05 02 o 01 e, 0.( 03 e,
~.2” ~.1" . 3/ .17 . | |

label sum: 0.4 4+ 0.6 =1 0.6 +03=0.9 03+0.7=1 07+04=1.1 AVG:05+05=1
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