

Birational Antichain Toggling and Rowmotion Michael Joseph* and Tom Roby

FPSAC 2019, Ljubljana, Slovenia

Products of Two Chains Posets

running examples.

The posets $[2] \times [2]$ and $[2] \times [3]$ serve as

Summary of Main Ideas

- Rowmotion and its various liftings are maps of longstanding interest in dynamical algebraic combinatorics, which have been studied for their periodicity, homomesy, cyclic sieving, and resonance.
- ► We lift antichain rowmotion to the piecewise-linear and birational realms, in parallel with the construction for order ideals.
- We construct an explicit bijection between the two (antichain and order) birational toggle groups, lifting a map from the combinatorial realm. This yields an equivariant bijection between BAR-motion and BOR-motion. In particular, BAR-motion has the same order as BOR-motion.
- Antichain rowmotion on the poset $[a] \times [b]$ rotates the Stanley–Thomas word, proving fiber homomesy [PR15]. We define a birational lifting of the Stanley–Thomas word to prove a fiber homomesy holds at the birational level as well.
- Equality of expressions proven in the birational realm imply the corresponding results in the piecewise-linear and combinatorial realms.

Rowmotion in the Combinatorial Realm

Combinatorial rowmotion is a particular permutation of the set of order ideals $\mathcal{J}(P)$ of a finite poset *P* or of the set of antichains $\mathcal{A}(P)$ of *P*. It is studied for its remarkable properties (periodicity, homomesy, cyclic sieving, resonance) on certain families of posets (especially products of chains and root posets). It was first studied as a map on $\mathcal{A}(P)$ by Brouwer and Schrijver [BS74], and goes by several names; in recent literature, the name "rowmotion," due to Striker and Williams [SW12] (who summarize the history), has stuck.

Definitions: Rowmotion and Transfer Maps

We follow the notation of Einstein and Propp [EP18] to define natural bijections between the sets $\mathcal{J}(P)$ of all *order ideals* of P, $\mathcal{F}(P)$ of all *order filters* of P, and $\mathcal{A}(P)$ of all *antichains* of P.

Explicit Isomorphism Between Antichain and Order Birational Toggle Groups

We have an isomorphism from the **birational antichain toggle group** $\operatorname{BTog}_A(P)$ generated by $\{\tau_e : e \in P\}$ and the **birational order toggle group** $\operatorname{BTog}_O(P)$ generated by $\{T_e : e \in P\}$. The isomorphism is given by $\tau_e \mapsto \tau_e^*$ with inverse given by $T_e \mapsto T_e^*$.

For $e \in P$, we define the following.

- ► Let $T_e^* \in \operatorname{BTog}_A(P)$ by $T_e^* := \tau_{e_1} \tau_{e_2} \cdots \tau_{e_k} \tau_e \tau_{e_1} \tau_{e_2} \cdots \tau_{e_k}$, where e_1, \ldots, e_k are the elements of *P* covered by *e*. (If *e* is a minimal element of *P*, then $t_e^* = \tau_e$.)
- Let $\eta_e \in \operatorname{BTog}_O(P)$ by $\eta_e := T_{x_1}T_{x_2}\cdots T_{x_k}$ where (x_1, x_2, \dots, x_k) is a linear extension of the subposet $\{x \in P : x < e\}$ of *P*.
- Let $\tau_e^* := \eta_e T_e \eta_e^{-1} \in \operatorname{BTog}_O(P)$.

Theorem (J.–R.)

Let $e \in P$. The diagrams below commute on the domains in which the maps are defined.

- The map $\Theta: 2^P \to 2^P$ where $\Theta(S) = P \setminus S$ is the **complement** of *S* (sending order ideals to order filters and vice versa).
- ► The up-transfer $\Delta : \mathcal{J}(P) \to \mathcal{A}(P)$, where $\Delta(I)$ is the set of maximal elements of *I*. For an antichain $A \in \mathcal{A}(P)$, $\Delta^{-1}(A) = \{x \in P : x \leq y \text{ for some } y \in A\}.$
- ► The **down-transfer** ∇ : $\mathcal{F}(P) \to \mathcal{A}(P)$, where $\nabla(F)$ is the set of minimal elements of *F*. For an antichain $A \in \mathcal{A}(P)$, $\nabla^{-1}(A) = \{x \in P : x \ge y \text{ for some } y \in A\}.$

Order ideal rowmotion is the map $\rho_{\mathcal{J}} : \mathcal{J}(P) \to \mathcal{J}(P)$ given by the composition $\rho_{\mathcal{J}} = \Delta^{-1} \circ \nabla \circ \Theta$. **Antichain rowmotion** is the map $\rho_{\mathcal{A}} : \mathcal{A}(P) \to \mathcal{A}(P)$ given by the composition $\rho_{\mathcal{A}} = \nabla \circ \Theta \circ \Delta^{-1}$.

Example of Rowmotion as 3-Step Processes ($P = [2] \times [2]$)

In each step, the elements of the subset of the poset are given by the filled-in circles.

$$\rho_{\mathcal{J}}: \bigoplus_{\bullet} \xrightarrow{\Theta} \xrightarrow{\Theta} \bigoplus_{\leftarrow} \bigvee_{\bullet} \bigoplus_{\leftarrow} \bigoplus_{\leftarrow} \xrightarrow{\Delta^{-1}} \bigoplus_{\bullet} \bigoplus_{\bullet} \bigoplus_{\leftarrow} \bigoplus_{\oplus$$

Generalizing Antichain Rowmotion to Chain Polytopes and Birational Labelings

For a poset *P*, Stanley's chain polytope C(P) is the set of [0, 1]-node-labelings such that the sum of the labels along any chain is at most 1 [Sta86]. We extend rowmotion on $\mathcal{A}(P)$ (the vertices of C(P)) to all of C(P) [EP18, Jos19].

The Poset \widehat{P}

So that multisets in the definitions (right) are nonempty, we extend the poset *P* to \widehat{P} by adjoining a minimal element $\widehat{0}$ and maximal element $\widehat{1}$.

Piecewise-Linear to Birational

We lift to the birational realm, by "detropicalizing" the operations through the following replacements. Note that *C* is just a generic constant

Chain Polytope Rowmotion [EP18, Jos19]

We define $\rho_{\mathcal{C}} : \mathcal{C}(P) \to \mathcal{C}(P)$ as the composition $\rho_{\mathcal{C}} = \nabla \circ \Theta \circ \Delta^{-1}$ where • $(\Theta f)(x) = 1 - f(x),$ • $(\nabla f)(x) = f(x) - \max_{y \leq x} f(y) \left(\text{with } f\left(\widehat{0}\right) = 0 \right),$

• $(\Delta^{-1}f)(x) = \max \{f(y_1) + f(y_2) + \dots + f(y_k) : x = y_1 \leqslant y_2 \leqslant \dots \leqslant y_k \leqslant \hat{1}\}.$ The notations $y \ge x$ and $y \leqslant x$ indicate *covering relations* in *P*.

Birational Antichain Rowmotion [EP18]

Let \mathbb{K}^P denote the set of node-labelings of *P* with elements of a field \mathbb{K} . We define **birational antichain rowmotion (BAR-motion)** as the birational map BAR : $\mathbb{K}^P \dashrightarrow \mathbb{K}^P$ given by BAR = $\nabla \circ \Theta \circ \Delta^{-1}$ where $(\Theta f)(x) = \frac{C}{f(x)}$,

Homomesy and Periodicity for BAR-motion

On a general poset *P*, birational rowmotion usually has infinite order. However, surprisingly for certain "nice" posets such as $[a] \times [b]$, as well as types A and B positive root posets, birational rowmotion has the same small order as combinatorial rowmotion. Grinberg and Roby [GR14] proved that BOR^{*a+b*} is the identity on the poset $P = [a] \times [b]$. Since BOR = $\nabla^{-1} \circ$ BAR $\circ \nabla$, we have that BAR^{*a+b*} is also the identity.

Let S be a collection of combinatorial objects, and $f : S \to \mathbb{K}$ a "statistic" on S. We call f homomesic with respect to an invertible action $\pi : S \to S$ if the (arithmetic) average of f over every π -orbit is the same [PR15]. A particular instance of homomesy with respect to ρ_A on the poset $P = [a] \times [b]$ is in terms of fibers.

Definition of Fibers in $[a] \times [b]$

Fix $a, b \in \mathbb{Z}^+$. For $1 \le k \le a$, the subset $\{(k, \ell) : 1 \le \ell \le b\}$ of $[a] \times [b]$ is called the *k*th positive fiber. For $1 \le \ell \le b$, the subset $\{(k, \ell) : 1 \le k \le a\}$ of $[a] \times [b]$ is called the ℓ th negative fiber.

Theorem (Propp–R. [PR15])

The statistics $p_i : \mathcal{A}(P) \to \mathbb{Z}$ and $n_i : \mathcal{A}(P) \to \mathbb{Z}$ where $p_i(A)$ (resp. $n_i(A)$) is 1 if A has an element in the *i*th positive fiber (resp. negative fiber) and 0 otherwise are homomesic with average b/(a+b) for p_i and a/(a+b) for n_i on any orbit. As the cardinality of an antichain can be expressed as $p_1 + p_2 + \cdots + p_a$, it follows that cardinality on $\mathcal{A}(P)$ is homomesic with average ab/(a+b).

Each antichain $A \in \mathcal{A}([a] \times [b])$ has an associated (a + b)-tuple w(A), called the Stanley–Thomas word. The proof of the above theorem relies on the fact that applying $\rho_{\mathcal{A}}$ cyclically rotates the the Stanley–Thomas word given by

 $w_i = \begin{cases} 1 & \text{if } 1 \le i \le a \text{ and } A \text{ has an element in the } a \text{th positive fiber,} \\ 1 & \text{if } a + 1 \le i \le a + b \text{ and } A \text{ has NO element in the } (i - a) \text{th negative fiber,} \\ -1 & \text{otherwise.} \end{cases}$

Orbits of ρ_A **on** $P = [2] \times [2]$ **and Stanley–Thomas Words**

The symbol : Il means to repeat, so ρ_A has order 4. Below each labeling is its Stanley–Thomas word and cardinality.

 $(\nabla f)(x) = \frac{f(x)}{\sum\limits_{y \leqslant x} f(y)} \left(\text{with } f\left(\widehat{0}\right) = 1 \right),$ $(\Delta^{-1}f)(x) = \sum \left\{ f(y_1)f(y_2)\cdots f(y_k) : x = y_1 \lessdot y_2 \lessdot \cdots \lessdot y_k \lessdot \widehat{1} \right\}.$

In [GR14, EP18, MR19] the extension of order ideal rowmotion to Stanley's order polytope, and its birational lifting, have been well-studied. BAR-motion comes from the same philosophy, but starting with antichain rowmotion instead.

Birational Toggles

Combinatorial rowmotion on order ideals or on antichains can be described either as the composition of three maps, or a composition of simple involutions called *toggles* [CF95, Str18, Jos19]. This lifts to the birational realm, and birational *order* toggles have been studied since around 2013. Birational *antichain* toggles are newly defined, as Einstein and Propp only studied BAR-motion in terms of transfer maps.

Birational Order Toggles [EP18, GR14]

For $e \in P$, the **birational order toggle** at *e* is the birational map $T_e : \mathbb{K}^P \dashrightarrow \mathbb{K}^P$ given by

$$(T_e(f))(x) = \begin{cases} f(x) & \text{if } x \neq e \\ \sum f(y) & \text{if } x \neq e \\ \frac{y \in \hat{P}, y \leq x}{f(e) \sum f(y)} & \text{if } x = e \end{cases}$$

where we set f(0) = 1 and f(1) = C.

Birational Antichain Toggles (J.–R.)

For $e \in P$, the **birational antichain toggle** at *e* is the rational map $\tau_e : \mathbb{K}^P \dashrightarrow \mathbb{K}^P$ given by

$$\left(\tau_e(g)\right)(x) = \begin{cases} \frac{C}{\sum\limits_{(y_1,\dots,y_k)\in \mathrm{MC}_e(P)} g(y_1)\cdots g(y_k)} & \text{if } x = e\\ g(x) & \text{if } x \neq e \end{cases}$$

where $MC_e(P)$ is the set of all maximal chains of *P* through *e*.

Birational Stanley–Thomas Word

ST word:

Let $a, b \in \mathbb{Z}^+$, $P = [a] \times [b]$, and $g \in \mathbb{K}^P$. The **Stanley–Thomas word** ST_g is the (a + b)-tuple $ST_g(i) = \begin{cases} g(i, 1)g(i, 2) \cdots g(i, b) & \text{if } 1 \le i \le a, \\ C/(g(1, i - a)g(2, i - a) \cdots g(a, i - a)) & \text{if } a + 1 \le i \le a + b. \end{cases}$

BAR-motion Orbit on $[2] \times [2]$

We have a birational analogue of fiber homomesy below. In the birational setting, to avoid dealing with taking *n*th roots, this manifests itself as certain products across an orbit equaling a fixed constant, independent of the initial labels.

Theorem (J.–R.): Fiber Homomesy for BAR-motion

Let $P = [a] \times [b]$. For a labeling $g \in \mathbb{K}^{P}$, $\operatorname{ST}_{\operatorname{BAR}(g)}(i) = \operatorname{ST}_{g}(i-1)$ for $2 \le i \le a+b$ and $\operatorname{ST}_{\operatorname{BAR}(g)}(1) = \operatorname{ST}_{g}(a+b)$. So, $\prod_{m=0}^{a+b-1} (\operatorname{BAR}^{m}g)(k,1)(\operatorname{BAR}^{m}g)(k,2)\cdots(\operatorname{BAR}^{m}g)(k,b) = C^{b} \text{ for } 1 \le k \le a, \text{ and}$ $\prod_{m=0}^{a+b-1} (\operatorname{BAR}^{m}g)(1,\ell)(\operatorname{BAR}^{m}g)(2,\ell)\cdots(\operatorname{BAR}^{m}g)(a,\ell) = C^{a} \text{ for } 1 \le \ell \le b.$

- 1		/	- \		
	\ /		1		
	\sim /			<u> </u>	

Definition/Theorem [EP18]

Let $(x_1, x_2, ..., x_n)$ be any linear extension of *P*. The birational lift of order ideal rowmotion, herein called **birational order rowmotion (BOR-motion)**, is BOR = $T_{x_1}T_{x_2} \cdots T_{x_n} = \Theta \circ \Delta^{-1} \circ \nabla$.

Theorem (J.–R.): BAR-motion is a Composition of Toggles

Let $(x_1, x_2, ..., x_n)$ be any linear extension of a finite poset *P*. Then BAR = $\tau_{x_n} \cdots \tau_{x_2} \tau_{x_1}$. Notice that the order of the poset elements in the composition of toggles is the opposite of that of BOR-motion (see left).

Example of BAR-motion as a Composition of Toggles $x \xrightarrow{z} y \xrightarrow{\tau_{(1,1)}} x \xrightarrow{z} y \xrightarrow{\tau_{(2,1)}} y \xrightarrow{\tau_{(2,1)}} y \xrightarrow{w(x+y)} y \xrightarrow{\tau_{(2,2)}} y \xrightarrow{w(x+y)} y \xrightarrow{\tau_{(2,2)}} y \xrightarrow{w(x+y)} x \xrightarrow{w(x+y)} y \xrightarrow{\tau_{(2,2)}} y \xrightarrow{w(x+y)} x \xrightarrow{w(x+y)} y \xrightarrow{\tau_{(2,2)}} y \xrightarrow{w(x+y)} x \xrightarrow{w(x+y)} y \xrightarrow{\tau_{(2,2)}} y \xrightarrow{w(x+y)} y \xrightarrow{w(x+y)} y$

► To apply the toggle $\tau_{(1,1)}$, we consider the two maximal chains through (1,1).

► $(1,1) \lt (2,1) \lt (2,2)$ with product of labels *wxz*

► $(1,1) \leq (1,2) \leq (2,2)$ with product of labels *wyz*

Thus $\tau_{(1,1)}$ changes the label at (1,1) to $\frac{C}{wxz+wyz} = \frac{C}{w(x+y)z}$.

Next we apply the toggle $\tau_{(2,1)}$. The only maximal chain through (2,1) is $(1,1) \le (2,1) \le (2,2)$ with product of labels

 $\frac{C}{w(x+y)z}xz$. Thus $\tau_{(2,1)}$ changes the label at (2,1) to $C / \left(\frac{C}{w(x+y)z}xz\right) = \frac{w(x+y)}{x}$.

111-0

The birational homomesy implies the corresponding result in the piecewise-linear realm. In the example orbit below of chain polytope rowmotion, note that the average "cardinality" (sum of labels) is $\frac{2 \cdot 2}{2+2} = 1$, as with antichain rowmotion.

$$0.1 \underbrace{\stackrel{0.3}{\underset{0.2}{\overset{0.4}{\overset{\rho_c}{\overset{}}}}}_{0.2} 0.4 \xrightarrow{\rho_c} 0.5 \underbrace{\stackrel{0.1}{\underset{0.1}{\overset{0.2}{\overset{}}}}_{0.1} 0.2 \xrightarrow{\rho_c} 0.1 \underbrace{\stackrel{0.2}{\underset{0.3}{\overset{0.4}{\overset{}}}}_{0.3} 0.4 \xrightarrow{\rho_c} 0.6 \underbrace{\stackrel{0.1}{\underset{0.1}{\overset{0.3}{\overset{}}}}_{0.1} 0.3 \xrightarrow{\rho_c} \bullet \blacksquare$$

label sum:0.4 + 0.6 = 10.6 + 0.3 = 0.90.3 + 0.7 = 10.7 + 0.4 = 1.1AVG:0.5 + 0.5 = 1

Selected References (See abstract for more references and details.)

- [BS74] A. Brouwer and L. Schrijver. On the period of an operator, defined on antichains. *Stichting Mathematisch Centrum. Zuivere Wiskunde* ZW 24/74 (1974), pp. 1-13.
 [CE05] D. Compress and D. Fors Der Flagge. Orbits of antichains registed. *Environmental Conditional Structure and Conditiona Structure and Conditional Structure and Conditiona Structure an*
- [CF95] P. Cameron and D. Fon-Der-Flaass. Orbits of antichains revisited. European J. Combin., 16(6):545–554, 1995.
- [EP18] D. Einstein and J. Propp. Combinatorial, piecewise-linear, and birational homomesy for products of two chains. 2018. arXiv:1310.5294v3.

[GR14] D. Grinberg and T. Roby. Iterative properties of birational rowmotion. 2014. arXiv:1402.6178v6.

- [Jos19] M. Joseph. Antichain toggling and rowmotion. *Electron J. Combin.* 26.1 (2019).
- [MR19] G. Musiker and T. Roby. Paths to understanding birational rowmotion on products of two chains. *Algebraic Combinatorics*. 2.2 (2019), pp. 275-304.
- [PR15] J. Propp and T. Roby. Homomesy in products of two chains. *Electron. J. Combin.* 22.3 (2015).

[Sta86] R. Stanley. Two poset polytopes. Discrete & Computational Geometry. 1.1 (1986), pp. 9–23.

- [Str18] J. Striker. Rowmotion and generalized toggle groups. *Discrete Mathematics & Theoretical Computer Science*. 20 (2018).
- [SW12] J. Striker and N. Williams. Promotion and rowmotion. *European J. Combin.*, 33:1919–1942, 2012.

Michael Joseph* Tom Roby Dalton State College University of Connecticut Email: mjosephmath@gmail.com Email: tom.roby@uconn.edu