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Summary of Main Ideas
I Rowmotion and its various liftings are maps of longstanding interest in dynamical algebraic combinatorics, which have been

studied for their periodicity, homomesy, cyclic sieving, and resonance.
I We lift antichain rowmotion to the piecewise-linear and birational realms, in parallel with the construction for order ideals.
I We construct an explicit bijection between the two (antichain and order) birational toggle groups, lifting a map from the

combinatorial realm. This yields an equivariant bijection between BAR-motion and BOR-motion. In particular, BAR-motion
has the same order as BOR-motion.

I Antichain rowmotion on the poset [a]× [b] rotates the Stanley–Thomas word, proving fiber homomesy [PR15]. We define a
birational lifting of the Stanley–Thomas word to prove a fiber homomesy holds at the birational level as well.

I Equality of expressions proven in the birational realm imply the corresponding results in the piecewise-linear and combinatorial
realms.

Rowmotion in the Combinatorial Realm

Combinatorial rowmotion is a particular permutation of the set of order
ideals J (P) of a finite poset P or of the set of antichains A(P) of P. It is
studied for its remarkable properties (periodicity, homomesy, cyclic sieving,
resonance) on certain families of posets (especially products of chains and
root posets). It was first studied as a map on A(P) by Brouwer and
Schrijver [BS74], and goes by several names; in recent literature, the name
“rowmotion,” due to Striker and Williams [SW12] (who summarize the
history), has stuck.

Products of Two Chains Posets

The posets [2]× [2] and [2]× [3] serve as
running examples.
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Definitions: Rowmotion and Transfer Maps

We follow the notation of Einstein and Propp [EP18] to define natural bijections between the sets J (P) of all order ideals of
P, F(P) of all order filters of P, and A(P) of all antichains of P.
I The map Θ : 2P → 2P where Θ(S) = P \ S is the complement of S (sending order ideals to order filters and vice versa).
I The up-transfer ∆ : J (P)→ A(P), where ∆(I) is the set of maximal elements of I. For an antichain A ∈ A(P),

∆−1(A) = {x ∈ P : x ≤ y for some y ∈ A}.
I The down-transfer∇ : F(P)→ A(P), where∇(F) is the set of minimal elements of F. For an antichain A ∈ A(P),
∇−1(A) = {x ∈ P : x ≥ y for some y ∈ A}.

Order ideal rowmotion is the map ρJ : J (P)→ J (P) given by the composition ρJ = ∆−1 ◦ ∇ ◦ Θ.
Antichain rowmotion is the map ρA : A(P)→ A(P) given by the composition ρA = ∇ ◦ Θ ◦∆−1.

Example of Rowmotion as 3-Step Processes (P = [2]× [2])

In each step, the elements of the subset of the poset are given by the filled-in circles.

ρJ : Θ7−→ ∇7−→
∆−1

7−→ ρA : ∆−1

7−→ Θ7−→ ∇7−→

Generalizing Antichain Rowmotion to Chain Polytopes and Birational Labelings

For a poset P, Stanley’s chain polytope C(P) is the set of [0, 1]-node-labelings such that the sum of the labels along any chain is at
most 1 [Sta86]. We extend rowmotion on A(P) (the vertices of C(P)) to all of C(P) [EP18, Jos19].

The Poset P̂

So that multisets in the definitions
(right) are nonempty, we extend the
poset P to P̂ by adjoining a minimal
element 0̂ and maximal element 1̂.

Piecewise-Linear to Birational

We lift to the birational realm, by
“detropicalizing” the operations
through the following replacements.
Note that C is just a generic constant
in the field K.

max + − nx 0 1
Replace with + · / xn 1 C

Chain Polytope Rowmotion [EP18, Jos19]

We define ρC : C(P)→ C(P) as the composition ρC = ∇ ◦ Θ ◦∆−1 where
I (Θf )(x) = 1− f (x),

I (∇f )(x) = f (x)−max
ylx

f (y)
(

with f
(

0̂
)

= 0
)

,

I (∆−1f )(x) = max
{

f (y1) + f (y2) + · · · + f (yk) : x = y1 l y2 l · · ·l yk l 1̂
}

.

The notations y m x and y l x indicate covering relations in P.

Birational Antichain Rowmotion [EP18]

Let KP denote the set of node-labelings of P with elements of a field K. We define
birational antichain rowmotion (BAR-motion) as the birational map
BAR : KP 99K KP given by BAR = ∇ ◦ Θ ◦∆−1 where
I (Θf )(x) = C

f (x),

I (∇f )(x) = f (x)∑
ylx

f (y)

(
with f

(
0̂
)

= 1
)

,

I (∆−1f )(x) =
∑{

f (y1)f (y2) · · · f (yk) : x = y1 l y2 l · · ·l yk l 1̂
}

.

In [GR14, EP18, MR19] the extension of order ideal rowmotion to Stanley’s order polytope, and its birational lifting, have been
well-studied. BAR-motion comes from the same philosophy, but starting with antichain rowmotion instead.

Chain Polytope Rowmotion Example

0.2

0.1 0.4

0.3

ρC

∆−1

∇

Θ

0.9

0.4 0.7

0.3

0.1

0.5 0.2

0.1

0.1

0.6 0.3

0.7

Birational Antichain Rowmotion Example
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Birational Toggles

Combinatorial rowmotion on order ideals or on antichains can be described either as the composition of three maps, or a
composition of simple involutions called toggles [CF95, Str18, Jos19]. This lifts to the birational realm, and birational order
toggles have been studied since around 2013. Birational antichain toggles are newly defined, as Einstein and Propp only studied
BAR-motion in terms of transfer maps.

Birational Order Toggles [EP18, GR14]

For e ∈ P, the birational order toggle at e is the
birational map Te : KP 99K KP given by

(
Te(f )

)
(x) =


f (x) if x 6= e∑

y∈P̂,ylx

f (y)

f (e)
∑

y∈P̂,ymx

1
f (y)

if x = e

where we set f
(

0̂
)

= 1 and f
(

1̂
)

= C.

Definition/Theorem [EP18]

Let (x1, x2, . . . , xn) be any linear extension of P. The
birational lift of order ideal rowmotion, herein called
birational order rowmotion (BOR-motion), is
BOR = Tx1Tx2 · · · Txn = Θ ◦∆−1 ◦ ∇.

Birational Antichain Toggles (J.–R.)

For e ∈ P, the birational antichain toggle at e is the rational map
τe : KP 99K KP given by

(
τe(g)

)
(x) =


C∑

(y1,...,yk)∈MCe(P)

g(y1) · · · g(yk)
if x = e

g(x) if x 6= e

where MCe(P) is the set of all maximal chains of P through e.

Theorem (J.–R.): BAR-motion is a Composition of Toggles

Let (x1, x2, . . . , xn) be any linear extension of a finite poset P. Then
BAR = τxn · · · τx2τx1. Notice that the order of the poset elements in the
composition of toggles is the opposite of that of BOR-motion (see left).

Example of BAR-motion as a Composition of Toggles
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I To apply the toggle τ(1,1), we consider the two maximal chains through (1, 1).
I (1, 1) l (2, 1) l (2, 2) with product of labels wxz
I (1, 1) l (1, 2) l (2, 2) with product of labels wyz
Thus τ(1,1) changes the label at (1, 1) to C

wxz+wyz = C
w(x+y)z.

I Next we apply the toggle τ(2,1). The only maximal chain through (2, 1) is (1, 1) l (2, 1) l (2, 2) with product of labels
C

w(x+y)zxz. Thus τ(2,1) changes the label at (2, 1) to C
/(

C
w(x+y)zxz

)
= w(x+y)

x .

Explicit Isomorphism Between Antichain and Order Birational Toggle Groups

We have an isomorphism from the birational antichain
toggle group BTogA(P) generated by {τe : e ∈ P} and the
birational order toggle group BTogO(P) generated by
{Te : e ∈ P}. The isomorphism is given by τe 7→ τ ∗e with
inverse given by Te 7→ T∗e .

For e ∈ P, we define the following.
I Let T∗e ∈ BTogA(P) by T∗e := τe1τe2 · · · τekτeτe1τe2 · · · τek,

where e1, . . . , ek are the elements of P covered by e. (If
e is a minimal element of P, then t∗e = τe.)

I Let ηe ∈ BTogO(P) by ηe := Tx1Tx2 · · · Txk where
(x1, x2, . . . , xk) is a linear extension of the subposet
{x ∈ P : x < e} of P.

I Let τ ∗e := ηeTeη
−1
e ∈ BTogO(P).

Theorem (J.–R.)

Let e ∈ P. The diagrams below commute on the domains
in which the maps are defined.
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Example on P = [2]× [3]
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Homomesy and Periodicity for BAR-motion

On a general poset P, birational rowmotion usually has infinite order. However, surprisingly for certain “nice” posets such as
[a]× [b], as well as types A and B positive root posets, birational rowmotion has the same small order as combinatorial rowmotion.
Grinberg and Roby [GR14] proved that BORa+b is the identity on the poset P = [a]× [b]. Since BOR = ∇−1 ◦ BAR ◦ ∇, we have
that BARa+b is also the identity.
Let S be a collection of combinatorial objects, and f : S → K a “statistic” on S. We call f homomesic with respect to an
invertible action π : S → S if the (arithmetic) average of f over every π-orbit is the same [PR15]. A particular instance of
homomesy with respect to ρA on the poset P = [a]× [b] is in terms of fibers.

Definition of Fibers in [a]× [b]

Fix a, b ∈ Z+. For 1 ≤ k ≤ a, the subset {(k, `) : 1 ≤ ` ≤ b} of [a]× [b] is called the kth positive fiber. For 1 ≤ ` ≤ b, the
subset {(k, `) : 1 ≤ k ≤ a} of [a]× [b] is called the `th negative fiber.

Theorem (Propp–R. [PR15])

The statistics pi : A(P)→ Z and ni : A(P)→ Z where pi(A) (resp. ni(A)) is 1 if A has an element in the ith positive fiber
(resp. negative fiber) and 0 otherwise are homomesic with average b/(a + b) for pi and a/(a + b) for ni on any orbit. As the
cardinality of an antichain can be expressed as p1 + p2 + · · · + pa, it follows that cardinality on A(P) is homomesic with
average ab/(a + b).

Each antichain A ∈ A
(
[a]× [b]

)
has an associated (a + b)-tuple w(A), called the Stanley–Thomas word. The proof of the above

theorem relies on the fact that applying ρA cyclically rotates the the Stanley–Thomas word given by

wi =

 1 if 1 ≤ i ≤ a and A has an element in the ath positive fiber,
1 if a + 1 ≤ i ≤ a + b and A has NO element in the (i− a)th negative fiber,
−1 otherwise.

Orbits of ρA on P = [2]× [2] and Stanley–Thomas Words

The symbol :|| means to repeat, so ρA has order 4. Below each labeling is its Stanley–Thomas word and cardinality.
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Birational Stanley–Thomas Word

Let a, b ∈ Z+, P = [a]× [b], and g ∈ KP. The Stanley–Thomas word STg is the (a + b)-tuple

STg(i) =

{
g(i, 1)g(i, 2) · · · g(i, b) if 1 ≤ i ≤ a,
C/
(
g(1, i− a)g(2, i− a) · · · g(a, i− a)

)
if a + 1 ≤ i ≤ a + b.

BAR-motion Orbit on [2]× [2]
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We have a birational analogue of fiber homomesy below. In the birational setting, to avoid dealing with taking nth roots, this
manifests itself as certain products across an orbit equaling a fixed constant, independent of the initial labels.

Theorem (J.–R.): Fiber Homomesy for BAR-motion

Let P = [a]× [b]. For a labeling g ∈ KP, STBAR(g)(i) = STg(i− 1) for 2 ≤ i ≤ a + b and STBAR(g)(1) = STg(a + b). So,
a+b−1∏

m=0

(BARmg)(k, 1)(BARmg)(k, 2) · · · (BARmg)(k, b) = Cb for 1 ≤ k ≤ a, and

a+b−1∏
m=0

(BARmg)(1, `)(BARmg)(2, `) · · · (BARmg)(a, `) = Ca for 1 ≤ ` ≤ b.

The birational homomesy implies the corresponding result in the piecewise-linear realm. In the example orbit below of chain
polytope rowmotion, note that the average “cardinality” (sum of labels) is 2·2

2+2 = 1, as with antichain rowmotion.

0.3
0.1 0.4

0.2

ρC7−→

0.4 + 0.6 = 1label sum:

0.1
0.5 0.2

0.1

ρC7−→

0.6 + 0.3 = 0.9

0.2
0.1 0.4

0.3

ρC7−→

0.3 + 0.7 = 1

0.1
0.6 0.3

0.1

ρC7−→

0.7 + 0.4 = 1.1

:||
AVG: 0.5 + 0.5 = 1

Selected References (See abstract for more references and details.)

[BS74] A. Brouwer and L. Schrijver. On the period of an operator, defined on antichains. Stichting Mathematisch Centrum. Zuivere
Wiskunde ZW 24/74 (1974), pp. 1-13.

[CF95] P. Cameron and D. Fon-Der-Flaass. Orbits of antichains revisited. European J. Combin., 16(6):545–554 , 1995.
[EP18] D. Einstein and J. Propp. Combinatorial, piecewise-linear, and birational homomesy for products of two chains. 2018.

arXiv:1310.5294v3.
[GR14] D. Grinberg and T. Roby. Iterative properties of birational rowmotion. 2014. arXiv:1402.6178v6.
[Jos19] M. Joseph. Antichain toggling and rowmotion. Electron J. Combin. 26.1 (2019).
[MR19] G. Musiker and T. Roby. Paths to understanding birational rowmotion on products of two chains. Algebraic

Combinatorics. 2.2 (2019), pp. 275-304.
[PR15] J. Propp and T. Roby. Homomesy in products of two chains. Electron. J. Combin. 22.3 (2015).
[Sta86] R. Stanley. Two poset polytopes. Discrete & Computational Geometry. 1.1 (1986), pp. 9–23.
[Str18] J. Striker. Rowmotion and generalized toggle groups. Discrete Mathematics & Theoretical Computer Science. 20 (2018).
[SW12] J. Striker and N. Williams. Promotion and rowmotion. European J. Combin., 33:1919–1942, 2012.

Department of Technology and Mathematics, Dalton State College, Dalton, GA 30720, USA Michael Joseph* Dalton State College Email: mjosephmath@gmail.com
Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA Tom Roby University of Connecticut Email: tom.roby@uconn.edu


