On The Homogenized Linial Arrangement: Intersection Lattice and Genocchi Numbers

Alexander Lazar[†] University of Miami, Michelle L. Wachs University of Miami

Background

The Homogenized Linial Arrangement

The hyperplane arrangement

 $\mathcal{H}_{2n-3} = \{ x_i - x_j = y_i \mid 1 \le i < j \le n \} \subseteq \mathbb{R}^{2n},$

was introduced by Hetyei in 2017. Using the finite field method of Athanasiadis, Hetyei showed that its number of regions is a **median** Genocchi number.

Genocchi Numbers and Dumont Permutations

 $\sigma(2i-1) \ge 2i-1, \quad \sigma(2i) < 2i.$

The **Genocchi number** g_n is the number of Dumont permutations on [2n-2]The median Genocchi number h_n is the number of Dumont derangements on |2n+2|.

Our Results

Type A

We refine Hetyei's result by studying the intersection lattice $\mathcal{L}(\mathcal{H}_{2n-1})$ and its characteristic polynomial $\chi_{\mathcal{L}(\mathcal{H}_{2n-1})}(t)$. By Zaslavsky's formula, the number of regions of \mathcal{H}_{2n-1} is $|\chi_{\mathcal{L}(\mathcal{H}_{2n-1})}(-1)|$.

We start our study by showing that $\mathcal{L}(\mathcal{H}_{2n-1})$ is an induced subposet of the lattice of partitions of [2n]

Theorem (L.-Wachs): $\sum_{n\geq 1} \chi_{\mathcal{L}(\mathcal{H}_{2n-1})}(t) x^n = \sum_{n\geq 1} \frac{(t-1)_n (t-1)_{n-1} x^n}{\prod_{k=1}^n (1-k(t-k)x)},$ where $(a)_n$ is the falling factorial $a(a-1)\cdots(a-(n-1))$.

Dowling Type

Let $\omega = e^{\frac{2\pi i}{m}}$. A natural generalization of the real arrangement \mathcal{H}_{2n-1} is the complex arrangement

 $\mathcal{H}_{2n-1}^m = \{ x_i - \omega^{\ell} x_j = y_i \mid 1 \le i < j \le n, 0 \le \ell < m \} \cup \{ x_i = y_i \mid 1 \le i \le n \},\$ which we call the homogenized Linial-Dowling arrangement.

We show that $\mathcal{L}(\mathcal{H}_{2n-1}^m)$ is an induced subposet of the Dowling lattice $Q_{2n-1}(\mathbb{Z}/m\mathbb{Z})$

Theorem (L.-Wachs):

$$\sum_{n\geq 1} \chi_{\mathcal{L}(\mathcal{H}_{2n-1}^{m})}(t)x^{n} = \sum_{n\geq 1} \frac{(t-1)_{n,m}(t-m)_{n-1,m}x^{n}}{\prod_{k=1}^{n}(1-mk(t-mk)x)},$$
where $(a)_{n,m} = a(a-m)\cdots(a-(n-1)m).$

The proof constructs a bijection from the NBC sets of $\mathcal{L}(\mathcal{H}_{2n-1})$ to a class of permutations we call D-permutations (which are discussed below), and from there to a class of excedent functions known as surjective pistols.

Plugging in t = -1 and t = 0 yields the right-hand sides of the following formulas of Barsky and Dumont (1981):

$$\sum_{n\geq 1} h_n x^n = \sum_{n\geq 1} \frac{n!(n+1)!x^n}{\prod_{k=1}^n (1+k(k+1)x)}$$
$$\sum_{n\geq 1} g_n x^n = \sum_{n\geq 1} \frac{n!(n-1)!x^n}{\prod_{k=1}^n (1+k^2x)}$$

Hence,
$$\chi_{\mathcal{L}(\mathcal{H}_{2n-1})}(0) = -g_n$$
 and $\chi_{\mathcal{L}(\mathcal{H}_{2n-1})}(-1) = -h_n$

Corollaries:

• (Hetyei) The number of regions of \mathcal{H}_{2n-1} is h_{n} • (L.-Wachs) The Möbius invariant $\mu(\mathcal{L}(\mathcal{H}_{2n-1}))$ of $\mathcal{L}(\mathcal{H}_{2n-1})$ is $-g_n$.

D-Permutations

When m = 1, $\mathcal{L}(\mathcal{H}_{2n-1}^1) \cong \mathcal{L}(\mathcal{H}_{2n-1})$.

When m = 2, \mathcal{H}^2_{2n-1} is the complexification of the **type B homogenized** Linial arrangement

 $\mathcal{H}^{B}_{2n-1} = \{ x_i \pm x_j = y_i \mid 1 \le i < j \le n \} \cup \{ x_i = y_i \mid 1 \le i \le n \} \subseteq \mathbb{R}^{2n}.$

By Zaslavsky's formula, setting m = 2 and t = -1 in the Theorem gives the following enumerative result.

Corollary (L.-Wachs): Let r_n^B be the number of regions of \mathcal{H}_{2n-1}^B . Then $\sum_{n \ge 1} r_n^B t^n = \sum_{n \ge 1} \frac{(2n)! x^n}{\prod_{k=1}^n (1 + 2k(2k+1)x)}.$

Gandhi Polynomials

The Gandhi polynomials $G_n(x)$ are the recursively-defined polynomials given by $G_1(x) = x^2$ and $G_n(x) = x^2(G_{n-1}(x+1) - G_{n-1}(x))$. They were shown to satisfy $G_n(1) = g_n$ by Carlitz (1972) and Riordan and Stein (1973).

A D-permutation is a permutation σ satisfying, for all i, $\sigma(2i) \le 2i, \quad \sigma(2i-i) \ge 2i-1.$

Theorem (L.-Wachs): The coefficient of t^{k-1} in $\chi_{\mathcal{H}_{2n-1}}(t)$ is $(-1)^k$ times the number of D-permutations on [2n] with exactly k cycles.

Corollary (L.-Wachs):

• #{regions of \mathcal{H}_{2n-1} } is the number of D-permutations on [2n]. • $\mu(\mathcal{L}(\mathcal{H}_{2n-1}))$ is -1 times the number of D-cycles on [2n].

Theorem (L.-Wachs): $\mu(\mathcal{L}(\mathcal{H}_{2n-1}^m)) = -m^{2n-1}G_n(m^{-1}).$

Decorated D-Permutations

An m-labeled D-permutation is a D-permutation with certain entries given decorations from the set $\{0, \ldots, m-1\}$

Theorem (L.-Wachs): The coefficient of t^{k-1} in $\chi_{\mathcal{L}(\mathcal{H}_{2n-1}^m)}(t)$ is $(-1)^k$ times the number of m-labeled D-permutations on [2n] with exactly \tilde{k} cycles.

http://www.math.miami.edu/~alazar

alazar@math.miami.edu