Möbius Inversion as Duality

Mario Sanchez, University of California, Berkeley Advisors: Federico Ardila, San Francisco State University Lauren Williams, Harvard University

Abstract

Many monoids and comonoids of interest in combinatorics can be equipped with a compatible poset structure.

In this poster, we show that for these monoids and comonoids, duality is best understood by introducing a second basis using Möbius inver-

Möbius Basis

Let **k** be a field of characteristic 0. Given a poset species **F**, define its **linearization kF** by $\mathbf{kF}[I] = \text{free } \mathbf{k}\text{-vector space on } \mathbf{F}[I].$

This has a standard basis given by the elements of $\mathbf{F}[I]$.

We can extend a (co)multiplication map linearily

Primitives

For a linearized comonoid (\mathbf{kF}, Δ) an element $x \in \mathbf{kF}[I]$ is **primitive** if

 $\Delta_{S,T}(x) = 0,$

for all $S \sqcup T = I$ with S and T non-empty.

Question: Find a nice basis for the vector space of primitives of $\mathbf{kF}[I]$.

sion. We then use this to calculate primitives for poset comonoids.

Poset Monoids and Comonoids

A poset species is a map H that assigns

to each finite set *I* a poset H[*I*]
to each bijection of finite sets *f* : *I* → *J* an order-preserving map H[*I*] → H[*J*].

A **poset monoid** is a poset species \mathbf{F} equipped with an order-preserving multiplication

 $m_{S,T}: \mathbf{F}[S] \times \mathbf{F}[T] \to \mathbf{F}[S \cup T]$

for all disjoint finite sets S and T satisfying associativity and unitality axioms.

A **poset comonoid** is a poset species \mathbf{F} equipped with an order-preserving comultiplication

to get a **linearized** (co)monoid.

We define the **Möbius basis** of $\mathbf{kF}[I]$ to be the set $\{\omega_x \mid x \in \mathbf{F}[I]\}$ where $\omega_x = \sum_{\substack{y \in \mathbf{F}[I]\\x \leq y}} \mu(x, y) y.$

Adjoint Pairs

Let (\mathbf{F}, Δ) be a poset comonoid and (\mathbf{F}, \Box) be a poset monoid on the same poset species \mathbf{F} .

This comonoid and monoid are an **adjoint pair**, denoted by $\Delta \dashv \Box$ if

 $\Delta_{S,T}(x) \le (y,z) \iff x \le y \square_{S,T} z,$

for all disjoint finite sets S and T and for all $x \in \mathbf{F}[S \sqcup T], y \in \mathbf{F}[S]$ and $z \in \mathbf{F}[T]$.

Example 1: For **SP**, we have $\Delta \dashv m$. That is,

Corollary: If (\mathbf{kF}, Δ) and (\mathbf{kF}, \Box) are an adjoint pair, then a basis for the primitives of $\mathbf{kF}[I]$ is given by

```
\{\omega_x \mid x \text{ is } \Box \text{-indecomposable.}\},\
```

where x is \Box -indecomposable if there is no S and T such that $x = x_1 \Box_{S,T} x_2$ for some $x_1 \in \mathbf{F}[I]$ and $x_2 \in \mathbf{F}[I]$.

Example 1: For **SP**, the only set partition of I that is m-indecomposable is the partition containing one part I. Thus, the primitives of **kSP**[I] are spanned by

$$\omega_I = \sum_{\pi} \mu(I, \pi) \pi.$$

General machinery and a result by Ardila and Aguiar [1] allows us to interpret this result in the ring of symmetric functions Sym. This recovers a classic result by Doubilet [2]:

 $\Delta_{S,T} : \mathbf{F}[S \cup T] \to \mathbf{F}[S] \times \mathbf{F}[T]$ for all disjoint finite sets S and T satisfying coassociativity and counitality axioms.

Example 1: Let **SP** be the poset species with $\mathbf{SP}[I] = \{ \text{Set Partitions of } I \},$

where $\pi \leq \tau$ if and only if every part of π is a union of parts of τ .

For example, we have

 $125|346 \le 15|3|2|46.$

```
This is a poset monoid with multiplication

m_{S,T}(\pi, \tau) = \pi \sqcup \tau
and poset comonoid with comultiplication
```

 $\Delta_{S,T}(\pi) = (\pi|_S, \pi|_T).$

Example 2: Let **G** be the poset species with $\mathbf{G} = \{\text{Graphs on vertex set } I\},\$

```
\pi|_S \leq \tau_1 \text{ and } \pi|_T \leq \tau_2 \iff \pi \leq \tau_1 \sqcup \tau_2,

Example 2: For G, we have \Delta \dashv \Box. That is,

H|_S \leq G_1 \text{ and } H|_T \leq G_2 \iff H \leq G_1 \Box G_2.
```

Duality

Given a linearized poset species ${\bf kF},$ we can define its linear dual by

 $\mathbf{kF}^*[I] = \operatorname{Hom}(\mathbf{kF}[I], \mathbf{k}).$

A general fact is that if (\mathbf{kF}, Δ) is a comonoid, then $(\mathbf{kF}^*, \Delta^*)$ with

 $\Delta_{S,T}^*(f,g)(x) = f \otimes g \circ \Delta_{S,T}(x)$

is a monoid and if (\mathbf{kF}, \Box) is a monoid, then (\mathbf{kF}^*, \Box^*) with

 $\Box_{S,T}^*(f)(x\otimes y) = f(x \Box_{S,T} y),$

is a comonoid.

 $p_n = \frac{1}{\mu(\hat{0}, \hat{1})} \sum_{\pi} \mu(\hat{0}, \pi) h_{\lambda(\pi)},$

where $\lambda(\pi)$ is the integer partition of the sizes of the parts of π , p_n is the power sum basis of Sym, and h_{λ} is the homogeneous basis of Sym.

Example 2: For **G**, a graph $G \in \mathbf{G}[I]$ is \Box indecomposable if and only if its complement G^c is connected. Thus, a basis for the primitives of $\mathbf{G}[I]$ is

 $\{\omega_G = \sum_{G \le H} (-1)^{|E(H) - E(G)|} H \mid G^c \text{ is connected}\}.$

Other Applications

 Calculate primitives for Hypergraphs, Simplicial Complexes, Generalized
 Permutahedra, Poset of Posets, Scheduling
 Problems, and Matroids.

where $H \leq G$ if $E(H) \subset E(G)$.

This has two poset monoid structures. The first is given by

 $m_{S,T}(G,H) = G \sqcup H$

and the second by

 $G \square_{S,T} H = (G^C \sqcup H^C)^C,$

where G^c is the complement graph of G. That is, you add all edges between G and H.

This is a poset comonoid with comultiplication $\Delta_{S,T}(G) = (G|_S, G|_T).$

Main Theorem

If (\mathbf{F}, Δ) and (\mathbf{F}, \Box) are an adjoint pair, then $(\mathbf{kF}, \Box) \cong (\mathbf{kF}^*, \Delta^*)$

through the map

 $x \mapsto \omega_x^*,$

where ω_x^* is the function defined by $\omega_x^*(\omega_y) = \delta_{x,y}$. Concretely, $\Delta_{S,T}(\omega_x) = \sum_{x_1 \square x_2 = x} \omega_{x_1} \otimes \omega_{x_2}$. • Prove cofreeness for the above comonoids.

 Expand various symmetric function invariants in the power-sum basis.

References

M. Aguiar and F. Ardila.
 Hopf monoids and Generalized Permutahedra.
 ArXiv e-prints, September 2017.

[2] P. Doubilet.

On the Foundations of Combinatorial Theory. VII:
Symmetric Functions through the Theory of
Distribution and Occupancy.
Studies in Applied Mathematics, 51(4):377–396.