A generalized quantum cohomology algebra for Gr(k, n)

Darij Grinberg[†] University of Minnesota \rightarrow Drexel University

Manifest

Structure constantts

- The purpose of this work is to generalize the algebraic/combinatorial parts of Schubert calculus: the properties of the cohomology ring $H^*(Gr(k, n))$ and the quantum cohomology ring $QH^*(Gr(k, n))$ of the Grassmannian.
- Specifically, we find a new algebra S/I that deforms both of these rings and shares multiple properties with them (a Schur basis, a Pieri rule, a "rim hook algorithm", an S_3 -symmetry).
- We define and study \mathcal{S}/I purely algebraically. Nevertheless, its structure constants appear to be positive, which suggests some yet unknown geometry lurking behind it.

The general setup

For every k-partition
$$\nu = (\nu_1, \nu_2, \dots, \nu_k) \in P_{k,n}$$
, we define its *complement*
 $\nu^{\vee} := (n - k - \nu_k, n - k - \nu_{k-1}, \dots, n - k - \nu_1) \in P_{k,n}.$

• We let $g_{\alpha,\beta,\gamma} \in \mathbf{k}$ be the structure constants of \mathcal{S}/I with respect to the Schur basis, labelled in such a way that

$$\overline{s_{\alpha}s_{\beta}} = \sum_{\gamma \in P_{k,n}} g_{\alpha,\beta,\gamma} \overline{s_{\gamma^{\vee}}} \quad \text{for all } \alpha,\beta \in P_{k,n}.$$

These generalize the Littlewood-Richardsons and (3-point) Gromov-Wittens.

Theorem 3 (S_3 -symmetry of the structure constants)

- Let **k** be a commutative ring. Let $\mathbb{N} = \{0, 1, 2, \ldots\}$. Let $n \ge k \ge 0$.
- Let $\mathcal{P} = \mathbf{k} [x_1, x_2, \dots, x_k]$ be the polynomial ring in k indeterminates over \mathbf{k} .
- For each (finite or infinite) sequence α and each *i*, let α_i be the *i*-th entry of α .
- For each $\alpha \in \mathbb{N}^k$, let x^{α} be the monomial $x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k}$.
- For each $\alpha \in \mathbb{Z}^k$, let $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_k$.
- Let ${\cal S}$ denote the ring of *symmetric* polynomials in ${\cal P}$.
- The commutative ${f k}$ -algebra ${\cal S}$ is freely generated by the complete homogeneous symmetric polynomials h_1, h_2, \ldots, h_k
- Let $a_1, a_2, \ldots, a_k \in \mathcal{P}$ such that $\deg a_i < n k + i$ for all i. (For example, this holds if $a_i \in \mathbf{k}$.)
- Let J be the ideal of ${\mathcal P}$ generated by the k differences

 $h_{n-k+1} - a_1, h_{n-k+2} - a_2, \ldots, h_n - a_k.$

Theorem 1 (monomial basis of \mathcal{P}/J)

The **k**-module \mathcal{P}/J is free with basis $(\overline{x^{\alpha}})_{\alpha \in \mathbb{N}^k; \alpha_i < n-k+i}$ for each i, where the overline — means "projection" onto whatever quotient we need (here: from ${\cal P}$ onto ${\cal P} \diagup J$).

Specializing to $a_i \in S$

For any $\alpha, \beta, \gamma \in P_{k,n}$, we have

 $g_{\alpha,\beta,\gamma} = g_{\alpha,\gamma,\beta} = g_{\beta,\alpha,\gamma} = g_{\beta,\gamma,\alpha} = g_{\gamma,\alpha,\beta} = g_{\gamma,\beta,\alpha} = \operatorname{coeff}_{\omega}\left(\overline{s_{\alpha}s_{\beta}s_{\gamma}}\right).$ Here, $\operatorname{coeff}_{\omega} f$ means the $\overline{s_{\omega}}$ -coefficient when $f \in \mathcal{S}/I$ is expanded in the Schur basis.

Theorem 4 (h-basis of S/I)

The **k**-module \mathcal{S}/I is free with basis $(h_{\lambda})_{\lambda \in P_{k,n}}$.

Proposition (h-reduction)

Let m be a positive integer. Then,

$$\overline{h_{n+m}} = \sum_{j=0}^{k-1} (-1)^j a_{k-j} \overline{s_{(m,1^j)}},$$

where $(m, 1^j) := (m, \underbrace{1, 1, \ldots, 1}_{j \text{ ones}}, 0, 0, 0, \ldots)$ (a hook-shaped k-partition)

Theorem 5 (h-Pieri rule, generalizing [1, (22)])

- FROM NOW ON, assume that $a_1, a_2, \ldots, a_k \in S$.
- Let I be the ideal of \mathcal{S} generated by the k differences

$$h_{n-k+1} - a_1, h_{n-k+2} - a_2, \ldots, h_n - a_k.$$

• A *k*-partition means a weakly decreasing *k*-tuple $(\lambda_1, \lambda_2, \ldots, \lambda_k) \in \mathbb{N}^k$. (Equivalently, it means a partition of length $\leq k$.)

• Let
$$\omega = \underbrace{(n-k, n-k, \dots, n-k)}_{k \text{ entries}}$$
 and

$$P_{k,n} = \{\lambda \text{ is a } k ext{-partition} \mid \lambda_1 \leq n-k\} = \{k ext{-partitions} \lambda \subseteq \omega\}$$
 .

• For any k-tuple ν of integers (not necessarily a partition), set

$$\boldsymbol{h}_{\boldsymbol{\nu}} = h_{\nu_1} h_{\nu_2} \cdots h_{\nu_k} \quad \text{and} \quad \boldsymbol{s}_{\boldsymbol{\nu}} = \det\left((h_{\nu_i - i + j})_{1 \le i \le k, \ 1 \le j \le k}\right).$$

Note that each h_{ν} is either 0 or can be rewritten as h_{λ} for some k-partition λ . Similarly for s_{ν} (except it can now be $\pm s_{\lambda}$ or 0).

• The **k**-module \mathcal{S} has a basis $(s_{\lambda})_{\lambda \text{ is a } k\text{-partition}}$ of Schur polynomials.

Theorem 2 (Schur basis of S/I)

The **k**-module $S \neq I$ is free with basis $(\overline{s_{\lambda}})_{\lambda \in P_{k,n}}$. (It will be called the *Schur basis*.)

Let
$$\lambda \in P_{k,n}$$
. Let $j \in \{0, 1, \dots, n-k\}$. Then,

$$\overline{s_{\lambda}h_{j}} = \sum_{\substack{\mu \in P_{k,n}; \\ \mu \neq \lambda \text{ is a} \\ \text{horizontal } j\text{-strip}}} \overline{s_{\mu}} - \sum_{i=1}^{k} (-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{(n-k-j+1,1^{i-1}),\nu} \overline{s_{\nu}},$$

where $c_{\alpha,\beta}^{\gamma}$ are the usual Littlewood–Richardson coefficients.

Theorem 6 (rim hook rule, generalizing [1, §2])

Let
$$\mu$$
 be a k -partition with $\mu_1 > n - k$. Let

$$W = \left\{ \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \in \mathbb{Z}^k \mid \lambda_1 = \mu_1 - n \\ \text{and } \lambda_i - \mu_i \in \{0, 1\} \text{ for all } i \in \{2, 3, \dots, k\} \right\}.$$

(Not all $\lambda \in W$ are k-partitions, but all belong to \mathbb{Z}^k , so s_λ makes sense.) Then,

$$\overline{s_{\mu}} = \sum_{j=1}^{k} (-1)^{k-j} a_j \sum_{\substack{\lambda \in W; \\ |\lambda| = |\mu| - (n-k+j)}} \overline{s_{\lambda}}.$$

Specializing to $a_i \in \mathbf{k}$

• FROM NOW ON, assume that $a_1, a_2, \ldots, a_k \in \mathbf{k}$.

This setting still is general enough to encompass ...

• classical cohomology: If $\mathbf{k} = \mathbb{Z}$ and $a_1 = a_2 = \cdots = a_k = 0$, then $\mathcal{S}/I \cong \mathrm{H}^*(\mathrm{Gr}(k,n))$; the basis $(\overline{s_\lambda})_{\lambda \in P_{k,n}}$ corresponds to the Schubert classes. • quantum cohomology: If $\mathbf{k} = \mathbb{Z}[q]$ and $a_1 = a_2 = \cdots = a_{k-1} = 0$ and $a_k = -(-1)^k q$, then $\mathcal{S} \nearrow I \cong \mathrm{QH}^*(\mathrm{Gr}(k,n))$.

The above theorem lets us work in these rings without relying on geometry.

Conjecture 7 (positivity? confirmed for $n \leq 8$)

Let $b_i = (-1)^{n-k-1} a_i$ for each $i \in \{1, 2, ..., k\}$. Let $\lambda, \mu, \nu \in P_{k,n}$. Is $(-1)^{|\lambda|+|\mu|-|\nu|} \operatorname{coeff}_{\nu}(\overline{s_{\lambda}s_{\mu}})$ a polynomial in $b_1, b_2, ..., b_k$ with coefficients in \mathbb{N} ?

More conjectures and results in |2|.

1 Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton, *Quantum multiplication* of Schur polynomials, Journal of Algebra **219** (1999), pp. 728–746.

darijgrinberg@gmail.com

2 Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf

[3] Alexander Postnikov, Affine approach to quantum Schubert calculus, Duke Mathematical Journal **128**, No. 3, pp. 473–509.

http://www.cip.ifi.lmu.de/~grinberg/