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The limit shape of shifted staircase SYT

» The shifted Young diagram \*" of a strictly decreasing partition \ is obtained
from the Young diagram by shifting rows to the right, row / by i — 1 steps.

» A shifted standard Young tableau (SYT) of shape A*" is an increasing filling of
the shifted diagram \*" with 1,2, ..., |)|.

» A,=(n—1,...,2,1) is the staircase partition.
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Figure 1: A SYT of the shifted staircase shape Ag".

One may view the entries in a SYT as heights, defining a surface. The theorem
below concerns the limit surface L of uniformly random shifted staircase SYT. We
omit the somewhat technical definition of L. However, note that L is half the limit
surface of random square SYT obtained by Pittel and Romik [5]. Our proof relies
heavily on their work. For a SYT T, T (i, /) denotes the entry in row /, column j.
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Equation (1) provides point-wise convergence to the limit surface, while (2)
specifies the rate of convergence, assuming a sufficient distance to the sides.

Figure 2: The limit shape of uniformly random shifted SYT of staircase shape.

132-avoiding sorting networks

» n-element sorting networks w = wy . .. wy are reduced words of the reverse
permutaton nn—1 ... 2 1.

» They are in bijection with SYT of shape A, (e.g. [3]).

It the intermediate permutations oy = s, ...5,,, 1 < k < N, of w are

132-avoiding, we say that w is an n-element 132-avoiding sorting network.

Denote the set of them by R,

\ 4

» R132is in bijection with shifted SYT of shape AS" [4]. For example,
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Note that e.g. the intermediate permutation o4 = s15y5154 = 32154 is
132-avoiding (and so are the other intermediate permutations of w).

» Random sorting networks were first studied by Angel, Holroyd, Romik and
Virag [1]. Dauvergne proved their conjectures in [2]. We study similar
questions on random 132-avoiding sorting networks.

Intermediate permutations and trajectories

The diagram D(o) of a permutation o is the set of cells left unshaded when we
shade the cells weakly to the east and south of 1-entries in the permutation matrix
M(co). See e.g. Figure 4. We show that the limits of diagrams of intermediate
permutations of random 132-avoiding sorting networks are given by shifting the
level curves of the limit surface L as in Figure 3.
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Figure 3: Translating the limit shape of shifted staircase SYT into the limits of diagrams of intermediate
permutations. (a) Level curves L(x,y) = « of the limit surface L at a = 0.05,0.1,...,0.95. (b) The blue curves are
the limit curves of the diagrams of the intermediate permutations o,y at times a = 0.05,0.1,...,0.95.

The limits of intermediate permutation matrices can then be obtained using the
symmetry of the probability measure under reversing the sorting network.

Figure 4: Intermediate permutation matrices of a random 132-avoiding sorting network with 1000 elements at times
11

« = 7,5 and %. The blue dots are the 1s, and the diagrams are the top-left white regions above the blue curves.

The scaled trajectory fi(a) of i in w € RI3 is defined by () = oy (i)/n for
alN € Z, and by linear interpolation for other o € [0, 1]. See the figures below.
We prove that fi(a) converges in probability to 2v/a — a2 for 0 < ar < % and 1
for % < a<l.
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Figure 5: Scaled trajectories in a 132-avoiding sorting network with 1000 elements.

n fact, each trajectory can be traced as a certain intersection on the limit shape L,
out given its technical definition, it is hard to compute arbitrary trajectories.
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Figure 6: A curve (in red) determining the scaled trajectory shown on the right from the limit shape.

Adjacencies

» For w € R k € [N — 1] is called an adjacency if |wyy1 — wi| = 1.

» Adjacencies in 132-avoiding sorting networks correspond directly to
adjacencies in shifted staircase SYT.

» Let T be a (possibly shifted) SYT and (/,j) a cell init. Then (T, (/,J)) is an
adjacency if T(i,j+1)=T(i,j)+1or T(i+1,j)=T(i,j)+ 1. For
example, (T,(1,2)) and (T, (1,3)) are adjacencies in the SYT T in Figure 1.

Theorem 2

The expected number of horizontal (vertical) adjacencies in column ¢ < n— 1
(row r < n— 1) of a uniformly random shifted staircase SYT is equal to 1.

T heorem 3

The expected number of adjacencies in a random 132-avoiding sorting network of
length N is 2(n — 2).
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