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The limit shape of shifted staircase SYT
I The shifted Young diagram λsh of a strictly decreasing partition λ is obtained

from the Young diagram by shifting rows to the right, row i by i − 1 steps.
I A shifted standard Young tableau (SYT) of shape λsh is an increasing filling of

the shifted diagram λsh with 1, 2, . . . , |λ|.
I ∆n = (n − 1, . . . , 2, 1) is the staircase partition.
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Figure 1: A SYT of the shifted staircase shape ∆sh
5 .

One may view the entries in a SYT as heights, defining a surface. The theorem
below concerns the limit surface L of uniformly random shifted staircase SYT. We
omit the somewhat technical definition of L. However, note that L is half the limit
surface of random square SYT obtained by Pittel and Romik [5]. Our proof relies
heavily on their work. For a SYT T , T (i , j) denotes the entry in row i , column j .
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)
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Moreover for all p ∈ (0, 1/2) and all q ∈ (0, p/2) such that 2p + q < 1
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where σ(x , y) = min{xy , (1− x)(1− y)}.

Equation (1) provides point-wise convergence to the limit surface, while (2)
specifies the rate of convergence, assuming a sufficient distance to the sides.

Figure 2: The limit shape of uniformly random shifted SYT of staircase shape.

132-avoiding sorting networks
I n-element sorting networks w = w1 . . .wN are reduced words of the reverse

permutation n n − 1 . . . 2 1.
I They are in bijection with SYT of shape ∆n (e.g. [3]).
I If the intermediate permutations σk = sw1

. . . swk
, 1 ≤ k ≤ N , of w are

132-avoiding, we say that w is an n-element 132-avoiding sorting network.
Denote the set of them by R132

n .
I R132

n is in bijection with shifted SYT of shape ∆sh
n [4]. For example,

w = 1213423121
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Note that e.g. the intermediate permutation σ4 = s1s2s1s4 = 32154 is
132-avoiding (and so are the other intermediate permutations of w).

I Random sorting networks were first studied by Angel, Holroyd, Romik and
Virág [1]. Dauvergne proved their conjectures in [2]. We study similar
questions on random 132-avoiding sorting networks.

Intermediate permutations and trajectories
The diagram D(σ) of a permutation σ is the set of cells left unshaded when we
shade the cells weakly to the east and south of 1-entries in the permutation matrix
M(σ). See e.g. Figure 4. We show that the limits of diagrams of intermediate
permutations of random 132-avoiding sorting networks are given by shifting the
level curves of the limit surface L as in Figure 3.
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Figure 3: Translating the limit shape of shifted staircase SYT into the limits of diagrams of intermediate

permutations. (a) Level curves L(x , y) = α of the limit surface L at α = 0.05, 0.1, . . . , 0.95. (b) The blue curves are

the limit curves of the diagrams of the intermediate permutations σbαNc at times α = 0.05, 0.1, . . . , 0.95.

The limits of intermediate permutation matrices can then be obtained using the
symmetry of the probability measure under reversing the sorting network.
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Figure 4: Intermediate permutation matrices of a random 132-avoiding sorting network with 1000 elements at times

α = 1
4,

1
2 and 3

4. The blue dots are the 1s, and the diagrams are the top-left white regions above the blue curves.

The scaled trajectory fi(α) of i in w ∈ R132
n is defined by fi(α) = σ−1

αN(i)/n for
αN ∈ Z, and by linear interpolation for other α ∈ [0, 1]. See the figures below.
We prove that f1(α) converges in probability to 2

√
α− α2 for 0 ≤ α ≤ 1

2, and 1
for 1

2 ≤ α ≤ 1.

Figure 5: Scaled trajectories in a 132-avoiding sorting network with 1000 elements.

In fact, each trajectory can be traced as a certain intersection on the limit shape L,
but given its technical definition, it is hard to compute arbitrary trajectories.

Figure 6: A curve (in red) determining the scaled trajectory shown on the right from the limit shape.

Adjacencies
I For w ∈ R123

n , k ∈ [N − 1] is called an adjacency if |wk+1 − wk| = 1.
I Adjacencies in 132-avoiding sorting networks correspond directly to

adjacencies in shifted staircase SYT.
I Let T be a (possibly shifted) SYT and (i , j) a cell in it. Then (T , (i , j)) is an

adjacency if T (i , j + 1) = T (i , j) + 1 or T (i + 1, j) = T (i , j) + 1. For
example, (T , (1, 2)) and (T , (1, 3)) are adjacencies in the SYT T in Figure 1.

Theorem 2
The expected number of horizontal (vertical) adjacencies in column c < n − 1
(row r < n − 1) of a uniformly random shifted staircase SYT is equal to 1.

Theorem 3
The expected number of adjacencies in a random 132-avoiding sorting network of
length N is 2(n − 2).
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