ON RANDOM SHIFTED STANDARD YOUNG TABLEAUX **AND 132-AVOIDING SORTING NETWORKS**

Svante Linusson¹, Samu Potka^{1,†} and Robin Sulzgruber²

¹Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden ²Department of Mathematics and Statistics, York University, Toronto, Canada

The limit shape of shifted staircase SYT

- The shifted Young diagram λ^{sh} of a strictly decreasing partition λ is obtained from the Young diagram by shifting rows to the right, row i by i - 1 steps.
- A shifted standard Young tableau (SYT) of shape λ^{sh} is an increasing filling of the shifted diagram λ^{sh} with $1, 2, \ldots, |\lambda|$.
- $\blacktriangleright \Delta_n = (n 1, \dots, 2, 1)$ is the *staircase* partition.

1	2	4	5
	3	6	7
		8	9
			10

Figure 3: Translating the limit shape of shifted staircase SYT into the limits of diagrams of intermediate permutations. (a) Level curves $L(x, y) = \alpha$ of the limit surface L at $\alpha = 0.05, 0.1, \dots, 0.95$. (b) The blue curves are the limit curves of the diagrams of the intermediate permutations $\sigma_{|\alpha N|}$ at times $\alpha = 0.05, 0.1, \dots, 0.95$.

The limits of intermediate permutation matrices can then be obtained using the

Figure 1: A SYT of the shifted staircase shape Δ_5^{sh} .

One may view the entries in a SYT as heights, defining a surface. The theorem below concerns the limit surface L of uniformly random shifted staircase SYT. We omit the somewhat technical definition of L. However, note that L is half the limit surface of random square SYT obtained by Pittel and Romik [5]. Our proof relies heavily on their work. For a SYT T, T(i,j) denotes the entry in row i, column j.

Theorem 1

For $n \in \mathbb{N}$, let $N = \binom{n}{2}$, \mathcal{T}_n denote the set of shifted SYT of shape Δ_n^{sh} , and \mathbb{P}_n the uniform probability measure on \mathcal{T}_n . Then for all $\epsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}_n\left(T\in\mathcal{T}_n:\max_{(i,j)\in\Delta_n^{\rm sh}}\left|\frac{T(i,j)}{N}-L\left(\frac{i}{n},\frac{j}{n}\right)\right|>\epsilon\right)=0.$$
 (1)

Moreover for all $p \in (0, 1/2)$ and all $q \in (0, p/2)$ such that 2p + q < 1

$$\lim_{n \to \infty} \mathbb{P}_n \left(T \in \mathcal{T}_n : \max_{\substack{(i,j) \in \Delta_n^{\mathrm{sh}} \\ \sigma(i/n,j/n) > n^{-q}}} \left| \frac{T(i,j)}{N} - L\left(\frac{i}{n}, \frac{j}{n}\right) \right| > n^{-p} \right) = 0, \quad (2)$$

where $\sigma(x, y) = \min\{xy, (1-x)(1-y)\}.$

Equation (1) provides point-wise convergence to the limit surface, while (2) specifies the rate of convergence, assuming a sufficient distance to the sides. symmetry of the probability measure under reversing the sorting network.

Figure 4: Intermediate permutation matrices of a random 132-avoiding sorting network with 1000 elements at times $\alpha = \frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$. The blue dots are the 1s, and the diagrams are the top-left white regions above the blue curves.

The scaled trajectory $f_i(\alpha)$ of *i* in $w \in \mathcal{R}_n^{132}$ is defined by $f_i(\alpha) = \sigma_{\alpha N}^{-1}(i)/n$ for $\alpha N \in \mathbb{Z}$, and by linear interpolation for other $\alpha \in [0, 1]$. See the figures below. We prove that $f_1(\alpha)$ converges in probability to $2\sqrt{\alpha - \alpha^2}$ for $0 \le \alpha \le \frac{1}{2}$, and 1 for $\frac{1}{2} \leq \alpha \leq 1$.

Figure 2: The limit shape of uniformly random shifted SYT of staircase shape.

132-avoiding sorting networks

- \blacktriangleright *n*-element sorting networks $w = w_1 \dots w_N$ are reduced words of the reverse permutation $n n - 1 \ldots 2 1$.
- \blacktriangleright They are in bijection with SYT of shape Δ_n (e.g. [3]).
- ▶ If the *intermediate permutations* $\sigma_k = s_{w_1} \dots s_{w_k}$, $1 \le k \le N$, of *w* are 132-avoiding, we say that w is an *n*-element 132-avoiding sorting network. Denote the set of them by \mathcal{R}_n^{132} .
- $\triangleright \mathcal{R}_n^{132}$ is in bijection with shifted SYT of shape Δ_n^{sh} [4]. For example,

Figure 5: Scaled trajectories in a 132-avoiding sorting network with 1000 elements.

In fact, each trajectory can be traced as a certain intersection on the limit shape L, but given its technical definition, it is hard to compute arbitrary trajectories.

Adjacencies

- For $w \in \mathcal{R}_n^{123}$, $k \in [N-1]$ is called an *adjacency* if $|w_{k+1} w_k| = 1$.
- Adjacencies in 132-avoiding sorting networks correspond directly to adjacencies in shifted staircase SYT.
- Let T be a (possibly shifted) SYT and (i, j) a cell in it. Then (T, (i, j)) is an adjacency if T(i, j + 1) = T(i, j) + 1 or T(i + 1, j) = T(i, j) + 1. For example, (T, (1, 2)) and (T, (1, 3)) are adjacencies in the SYT T in Figure 1.
- Note that e.g. the intermediate permutation $\sigma_4 = s_1 s_2 s_1 s_4 = 32154$ is 132-avoiding (and so are the other intermediate permutations of w).
- Random sorting networks were first studied by Angel, Holroyd, Romik and Virág [1]. Dauvergne proved their conjectures in [2]. We study similar questions on random 132-avoiding sorting networks.

Intermediate permutations and trajectories

The diagram $D(\sigma)$ of a permutation σ is the set of cells left unshaded when we shade the cells weakly to the east and south of 1-entries in the permutation matrix $M(\sigma)$. See e.g. Figure 4. We show that the limits of diagrams of intermediate permutations of random 132-avoiding sorting networks are given by shifting the level curves of the limit surface L as in Figure 3.

Theorem 2

The expected number of horizontal (vertical) adjacencies in column c < n - 1(row r < n - 1) of a uniformly random shifted staircase SYT is equal to 1.

Theorem 3

The expected number of adjacencies in a random 132-avoiding sorting network of length N is 2(n-2).

References

[1] O. Angel, A. E. Holroyd, D. Romik and B. Virág. Random sorting networks. Adv. in Math., 215(2):839-868, 2007.

- [2] D. Dauvergne. The Archimedean limit of random sorting networks. *arXiv:1802.08934*, 2018.
- [3] P. Edelman and C. Greene. Balanced tableaux, Adv. in Math., 63(1):42-99, 1987.
- [4] S. Fishel and L. Nelson. Chains of maximum length in the Tamari lattice, Proc. Amer. Math. Soc., 142(10):3343-3353, 2014.
- [5] B. Pittel and D. Romik. Limit shapes for random square Young tableaux. Adv. in Appl. Math., 38(2):164-209, 2007.

¹Supported by the Swedish Research Council grant 621-2014-4780.

