

Slit-slide-sew bijections for bipartite and quasibipartite plane māps

Jérémie Bettinelli

Bipartite/quasibipartite plane map

Map of type $a = (a_1, \ldots, a_r)$: plane map with r numbered faces f_1, \ldots, f_r of respective degrees a_1, \ldots, a_r , with a marked ments corner per face.

Bipartite: every a_i even. Quasibipartite: exactly two odd a_i 's.

Tutte's formula of slicings [Tutte '62]

For $\boldsymbol{a} = (a_1, \ldots, a_r) \in \mathbb{N}^r$, define the following.

- M(a): number of maps of type a.
- $E(a) := \frac{1}{2} \sum_{i=1}^{r} a_i$: numbers of edges of maps of type *a*.
- V(a) := E(a) r + 2: numbers of vertices of maps of type *a*.

Thm. For bipartite or quasibipartite maps (i.e., at most two odd a_i 's),

$$I(\boldsymbol{a}) = \frac{\left(E(\boldsymbol{a}) - 1\right)!}{V(\boldsymbol{a})!} \prod^{r} \alpha(a_i),$$

How to transfer a corner: degree ≥ 2 $(\mathbf{a} = (a_1, \ldots, a_{r+1}) \in \mathbb{N}^{r+1}$ with $a_{r+1} \ge 2$ such that • either every a_i is even; • or only a_{r+1} and one other a_i are odd. $\tilde{a} = (\tilde{a}_1, \dots, \tilde{a}_r) := (a_1 + 1, a_2, \dots, a_r, a_{r+1} - 1)$ $M(\boldsymbol{a}) =$ $(\tilde{a}_{r+1}+1)M(\tilde{a})$ $|a_{r+1}/2|$ $|\tilde{a}_1/2|$ $(a_1 + 1)$ half-edge h $\begin{array}{c} \text{corner} \\ c \text{ in } f_1 \end{array}$ corner half-edge h'c' in f_{r+1} of f_1 away from c'of f_{r+1} toward c

$V(\boldsymbol{a})$! where $\alpha(x) := \frac{x!}{|x/2|! |(x-1)/2|!}$.

Aim

Bijectively interpret relations between the numbers of maps having almost the same type.

recovered by transfer bijections [Cori '75], encoding by blossoming trees [Schaeffer '97], Bouttier–Di Francesco–Guitter bijection [Collet–Fusy '14]

 $\mathbf{a} = (a_1, \dots, a_r, \mathbf{1}) \in \mathbb{N}^{r+1}$ with two odd coordinates

(1.) Orient e toward c' and consider the rightmost geodesic from it toward c'.

(2.) Do "the same" with c instead of c'.

 $(\boldsymbol{a} = (a_1, \dots, a_r) \in 2\mathbb{N}^r)$

(3.) Slit! Slide! Sew! And mark v, h and h'.

Proof for transfer bijections (degree ≥ 2 **)**

We need to see that the leftmost geodesic ℓ from h'_0 toward cbecomes the rightmost geodesic r from h_0 toward c'.

Suppose by contradiction that r is not the image of ℓ .

There is thus a circumvention of the image of ℓ in the output map that is either shorter and to the right or strictly shorter and to the left (left part of the picture).

Decomposition into transfer bijections

Track back this circumvention in the input map and obtain a circumvention to ℓ that is either shorter and to the left or PSfrag replacements strictly shorter and to the right (right part of the picture). This is a contradiction.

PSfrag replacements

jeremie.bettinelli@normalesup.org

nsup.org/~bettinel