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1) Setup

•We work in the polynomial ring K[x1, . . . , xn];

• each monomial ideal I of R has a unique minimal monomial generating set G(I);

• all the considered objects will be m-primary monomial ideals of R, that is, monomial
ideals I such that for some positive integers d1, . . . , dn we have {xd11 , . . . , x

dn
n } ⊆ G(I);

•we will not distinguish between monomial xα1

1 · · · xαnn and point (α1, . . . , αn); multiplica-
tion of monomials corresponds to addition of points.

2) Boxes and good ideals

Definition 1. Let I be an ideal. Recall that {xd11 , . . . , x
dn
n } ⊆ G(I) for some di. Let

a1, . . . , an be nonnegative integers and denote

Ba1,...,an := ([a1d1, (a1 + 1)d1]× . . .× [andn, (an + 1)dn]) ∩ Nn.

Ba1,...,an will be called the box with coordinates (a1, . . . , an), associated to I .

Definition 2. We will say that an ideal I is good if the following holds: for every
positive integer l, every minimal generator of I l belongs to some box Ba1,...,an such that
a1 + . . . + an = l − 1.

3) Example of a bad ideal
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Fig. 1: powers of I : I and I2

Example 3.Let I = 〈x4, y6, xy2〉 ⊂ K[x, y].
In this case the associated boxes have sizes 4×
6. Then I2 = 〈x8, x5y2, x2y4, xy8, y12〉. We
see that x2y4 only belongs to B0,0. Therefore,
the box decomposition principle fails already
in I2 and I is a bad ideal.

4) Example of a good ideal
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Fig. 2: powers of I : I , I2, I3 and I4

Example 4. Let I = 〈x5, y5, xy4, x4y〉 ⊂
K[x, y]. In this case the associated boxes have
sizes 5× 5.
We see that:
all elements of G(I) lie in B0,0;
all elements of G(I2) lie in B1,0 and B0,1;
all elements of G(I3) lie in B2,0, B1,1 and B0,2.
The pattern repeats in all powers of I : for
every l ≥ 1 each minimal generator of I l be-
longs to some box whose sum of coordinates
is l − 1. Therefore, I is a good ideal.

5) Ideals inside boxes and their connection to each

other

Let I = 〈x5, y5, xy4, x4y〉 ⊂ K[x, y] as in Example 4. Consider the box B1,0. If we zoom
into this box, we will see the following picture:

Fig. 3: I1,0

Define I1,0 := 〈y5, xy4, x3y2, x4y, x5〉. In other words, we pretend that the origin is the
lower left corner of the box. We similarly define Ia1,...,an for any n, a good ideal I in R and
nonnegative integers a1, . . . , an.

Theorem 5.Let I be a good ideal and let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative
integers such that (a1, . . . , an) ≤ (b1, . . . , bn). Then Ia1,...,an ⊆ Ib1,...,bn.

6) Cones

Definition 6. Let a1, . . . , an be nonnegative integers. We will use the following notation:

Ca1,a2,...,ak,ak+1,ak+2,...,an := {(b1, . . . , bn) ∈ Nn |
b1 = a1, . . . , bk = ak, bk+1 ≥ ak+1, . . . , bn ≥ an}.

We will use a similar notation for any configuration of fixed and non-fixed coordinates. Sets
of this type will be called cones, for any cone the number of non-fixed coordinates will be
called its dimension and (a1, . . . , an) will be called its vertex. Note that Nn = C0,0,...,0.
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Fig. 4: a covering of N2 with cones

Example 7. Figure 4 represents the follow-
ing six cones: C0,0, C0,1, C1,0, C1,1, C2,0, C2,1.
The boundary lines are only drawn for better
visibility. Clearly, the number of boundary
lines equals the dimension of the cone.

7) Painting boxes of a good ideal

Theorem 8. For any good ideal I there exists a finite coloring of Nn such that if
(a1, . . . , an) has the same color as (b1, . . . , bn), then Ia1,...,an = Ib1,...,bn and for each color
the set of points of this color forms a cone.

Sketch of the proof: First of all, note that it is possible to find a point (a1, . . . , an)
such that the following holds: for all (b1, . . . , bn) ≥ (a1, . . . , an) we have Ia1,...,an = Ib1,...,bn.
Indeed, if we assume the converse, then from Theorem 5 for every point of Nn there exists
a strictly larger point that corresponds to a strictly larger ideal, therefore, we can build an
infinite chain of strictly increasing ideals, which is impossible, for example, by Noetherianity
of the polynomial ring. So existence of such a point (a1, . . . , an) is justified. Then we may
paint all of Ca1,...,an with the same color. Now we have painted an n-dimensional ”piece” of
Nn and are left with finitely many ”pieces” of dimensions n − 1 and less. We treat them
similarly.
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Fig. 5: two examples of possible colorings of N2, associated to I

Example 9. Let us look at Example 4 again.
Figure 5 represents two possible colorings of
boxes/points in Nn, associated to I . Clearly,
there are infinitely many colorings, but we will
stick to one as soon as we found it: some fur-
ther constructions depend on the coloring, but
we do not want to put any additional indices.

8) The main result

Definition 10. Let R be any ring and I and J be ideals in it. The quotient of I and J
is the ideal I : J := {r ∈ R | rJ ⊆ I}.
For a given ideal I we have an ascending chain of ideals Ik+1 : Ik. If R is Noetherian, this
chain must stabilize and the resulting ideal Ĩ = ∪k≥0(I

k+1 : Ik) is called the Ratliff-Rush
closure of I . Under some conditions on R and I , this ideal has some nice properties. In
general it is not known how to compute Ĩ , but it is possible for good monomial ideals.

The idea is as follows. Given a good ideal I , we have a coloring as in Theorem 8. Note that
we have fixed one coloring to work with. Our coloring is a disjoint union of cones. Each
cone has a vertex. Let L denote the maximum of sums of coordinates of these vertices.
For example, for both colorings in Figure 5 we have L = 2. The geometric meaning of this
number is the following: starting from IL+1, powers of I look similar to each other. For
instance, let I be as in Example 4 and let us choose the left coloring in Figure 5. We know
that every power of I starting from I3 consists of a green box, an orange box and several
red boxes and we exactly know where each of them is. This means, there is a pattern on
high powers of I , and this is a key point for finding Ĩ .

Now let us consider the following line of boxes which is in bijection with nonnegative integer
points on the x1-axis: B0,0,...,0, B1,0,...,0, B2,0,...,0 etc. Let Bq1,0...,0 be the stabilizing box of this
sequence in a sense that q1 is the smallest nonnegative integer such that It,0,...,0 = Iq1,0,...,0
for all t ≥ q1. Similarly, considering lines of boxes going along the other coordinate axes,
we will get q2, q3, . . . , qn.

Theorem 11. Let I be a good ideal. Then Ĩ = Iq1,0,...,0 ∩ I0,q2,...,0 ∩ . . . ∩ I0,...,0,qn.

Example 12. Let I be as in Example 4 together with the left coloring in Figure 5. Then
Ĩ equals the intersection of the ideal inside any of the orange boxes and the ideal inside
any of the green boxes. They are both equal to 〈x5, x4y, x3y2, x2y3, xy4, y5〉 and thus
Ĩ = 〈x5, x4y, x3y2, x2y3, xy4, y5〉.


