SKEW KEY POLYNOMIALS AND THE KEY POSET SAMI ASSAF* AND STEPHANIE VAN WILLIGENBURG

ABSTRACT

We generalize Young's lattice on integer partitions to a new partial order on weak compositions called the *key poset*. Saturated chains in this poset correspond to *standard key tableaux*, the combinatorial objects that generate the key polynomial basis for the polynomial ring, a generalization of the Schur basis for symmetric functions. Generalizing skew Schur functions, we define *skew* key polynomials in terms of the poset, and, using weak dual equivalence, we give a nonnegative *weak composition Littlewood–Richardson rule* for the key expansion of skew key polynomials.

MAIN RESULT

We define skew key polynomials for weak *compositions* $\mathbf{a} \prec \mathbf{d}$ in the key poset. Then

$$\kappa_{\mathbf{d}/\mathbf{a}} = \sum_{\mathbf{b}} c^{\mathbf{d}}_{\mathbf{a},\mathbf{b}} \kappa_{\mathbf{b}}$$

where $c_{a,b}^{d}$ are *nonnegative* integers.

YOUNG'S LATTICE

Young's lattice is the partial order \subseteq on *parti*tions given by containment of diagrams, that is $\lambda \subseteq \mu$ if and only if $\lambda_i \leq \mu_i$ for all *i*.

Key Poset

The key poset is the partial order \prec on weak compositions of length n defined by the relation $a \leq b$ if and only if $a_i \leq b_i$ for i = 1, 2, ..., n and for any indices $1 \leq i < j \leq n$ for which $b_j > a_j$ and $a_i > a_j$, we have $b_i > b_j$. This is *not* equivalent to containment of diagrams.

The cover relations for Young's lattice are $\lambda \prec \mu$ if and only if μ is obtained from λ by adding a single box to the end of a row for which the higher row is strictly shorter.

SCHUR FUNCTIONS

A standard Young tableau of shape λ is a bijective filling of λ with $1, 2, \ldots, n$ such that row entries increase left to right and column entries increase bottom to top.

A standard Young tableau is equivalent to

The *cover relations for the key poset* are $a \prec b$ if and only if b is obtained from a by incrementing a_i by 1 where for any i < j we have $a_i \neq a_j + 1$.

Key Polynomials

The key polynomial indexed by a is

 $\kappa_a = \sum \mathfrak{F}_{\operatorname{des}(T)}$

 $T \in SKT(a)$

where \mathfrak{F}_{a} is a *fundamental slide polynomial*

 $\kappa_{(0,2,1)} = \mathfrak{F}_{(0,2,1)} + \mathfrak{F}_{(1,2,0)}.$

Definition 1 ([3]). A *standard key tableau* is a bijective filling of a key diagram with 1, 2, ..., nsuch that rows weakly decrease from left to right, and if some entry *i* is above and in the same column as an entry k with i < k, then there is an entry j immediately right of k and i < j.

Theorem 1 (A.-vW.[2]). Saturated chains from \emptyset to a in the key poset are in bijection with standard key tableaux of shape a by the correspondence placing n - i + 1 into the unique cell of $a^{(i)}/a^{(i-1)}$.

a *saturated chain* in Young's lattice.

The *skew Schur function indexed by* $\lambda \subset \nu$ is

 $s_{\mu/\lambda}(X) = \sum F_{\text{Des}(T)}(X)$ $T \in SYT(\nu/\lambda)$

where $F_{\alpha}(X)$ is a *fundamental quasisymmetric function* [5]. For example, $s_{(2,1)}(X) = F_{(2,1)}(X) + F_{(1,2)}(X).$

Using the key poset we define *skew key polynomials* for weak compositions $a \prec d by$

$$\kappa_{d/a} = \sum_{T \in \text{SKT}(d/a)} \mathfrak{F}_{\text{des}(T)}.$$

This generalizes the *flagged skew Schur polynomials* studied by Reiner–Shimozono [6].

SCHUR POSITIVITY

Definition 2. The *Littlewood–Richardson co– efficients* $c_{\lambda,\mu}^{\nu}$ are given by

 $s_{\nu/\lambda}(X) = \sum c_{\lambda,\mu}^{\nu} s_{\mu}(X)$

Theorem 2. For all λ, μ, ν , we have $c_{\lambda,\mu}^{\nu} \in \mathbb{N}$.

KEY POSITIVITY

[1]. For example,

Definition 3. The *weak composition Littlewood–Richardson coefficients* $c_{a,b}^{d}$ are given by

 $\kappa_{\mathbf{d}/\mathbf{a}} = \sum_{\mathbf{b}} c^{\mathbf{d}}_{\mathbf{a},\mathbf{b}} \kappa_{\mathbf{b}}$

Theorem 3 (A.-vW. [2]). For $\mathbf{a} \prec \mathbf{d}$ in the key poset, we have $c_{\mathbf{a},\mathbf{b}}^{\mathbf{d}} \in \mathbb{N}$ for all \mathbf{b} .

Our proof utilizes weak dual equivalence [3] to consolidate skew standard key tableaux into equivalence classes, each corresponding to a single key polynomial.

One of myriad proofs uses *dual equivalence* [4] to consolidate skew standard Young tableaux into equivalence classes, each corresponding to a single Schur function.

Moreover, this result is tight. We could define skew key polynomials for any $a \subset d$. **Theorem 4** (A.-vW. [2]). For $\mathbf{a} \subset \mathbf{d}$ s.t. $\mathbf{a} \not\prec \mathbf{d}$ in the key poset, $c_{\mathbf{a},\mathbf{b}}^{\mathbf{d}} < 0$ for some weak composition \mathbf{b} .

REFERENCES

- [1] S. Assaf and D. Searles. Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams. Adv. Math., 306:89–122, 2017.
- [2] S. Assaf and S. van Willigenburg. Skew key polynomials and a generalized Littlewood– Richardson rule. arXiv:1905.11526.

[3] S. H. Assaf. Weak dual equivalence for polynomials. arXiv:1702.04051.

[4] S. H. Assaf. Dual equivalence graphs I: A new paradigm for Schur positivity. Forum Math. *Sigma*, 3:e12, 33, 2015.

[5] I. M. Gessel. Multipartite *P*-partitions and inner products of skew Schur functions. In Combina-

torics and algebra (Boulder, Colo., 1983), volume 34 of Contemp. Math., pages 289–317. Amer. Math. Soc., Providence, RI, 1984.

[6] V. Reiner and M. Shimozono. Key polynomials and a flagged Littlewood-Richardson rule. J. *Combin. Theory Ser. A*, 70(1):107–143, 1995.

email: shassaf@usc.edu steph@math.ubc.ca