

Inhomogeneous Restricted Lattice Walks

Manfred Buchacher* and Manuel Kauers, Institute for Algebra, JKU, Linz, Austria

Inhomogeneities via finite Automatons

A lattice walk is **homogeneous** with respect to a finite set $\mathbf{S} \subseteq \mathbb{Z}^d$, if each of its steps is taken from \mathbf{S} . It is called **inhomogeneous**, if the set of admissible steps is governed by a **deterministic finite automaton**. A finite automaton is a directed multigraph $(\mathcal{Q}, \mathcal{E})$ whose edges are labelled by letters of some alphabet. The vertices $q \in \mathcal{Q}$ are called states. One particular state $q_0 \in \mathcal{Q}$ is called the initial state, and there is a subset $\bar{\mathcal{Q}} \subseteq \mathcal{Q}$ of final states. The edges are labelled by elements of \mathbb{Z}^d . To be deterministic means that for every pair (q, s)with $q \in \mathcal{Q}$ and $s \in \mathbb{Z}^d$ there is at most one edge starting from q and labelled by s. A lattice walk $w = w_0, \ldots, w_n$ is inhomogeneous in this respect if there is a path in the automaton starting at the initial state, ending at one of the final states, and such that the *i*-th edge of the path is labelled with $w_i - w_{i-1}$. We

JOHANNES KEPLER UNIVERSITÄT LINZ

write \mathbf{S}_{pq} for the set of all $s \in \mathbb{Z}^d$ which label an edge from p to q.

Unrestricted Lattice Walks

Given an inhomogeneity as above, let F be the generating function of walks in \mathbb{Z}^d that start at the origin counted by their length and endpoint, and F_q be the one of those associated with paths in the finite automaton that end at final state $q \in \bar{\mathcal{Q}}$. Then $F = \sum_{q \in \bar{\mathcal{Q}}} F_q$ and the F_q 's uniquely solve the following linear system of functional equations

$$F_q = [q = q_0] + t \sum_{p \in \mathcal{Q}} S_{pq} F_q, \quad q \in \mathcal{Q},$$

where $S_{pq}(x) = \sum_{i \in \mathbf{S}_{pq}} x^i$ is the step polynomial of \mathbf{S}_{pq} . In particular, F is a rational function.

Walks restricted to a Half-Space

Generating functions of walks restricted to $\mathbb{Z}^{d-1} \times \mathbb{Z}_{>0}$ need not be rational in general, but they turn out to be always **algebraic**. This is a consequence of the following

Walks restricted to the Orthant

The nature of generating functions of walks restricted to $\mathbb{Z}_{\geq 0}^d$ is more **diverse** when $d \ge 2$: it can be rational, algebraic but non-rational, D-finite but nonalgebraic, or non-D-finite.

Methods for deciding their nature and finding expressions for them carry over from the homogeneous setting to the inhomogeneous one such as, for instance, the notion of **dimension**, the **decomposition** into and **projection** onto lower dimensional models, proofs of D-finiteness via the kernel method, proofs of non-D-finiteness via the computation of the asymptotics of their coefficients...

But for many models existing methods do not apply.

We investigated time-inhomogeneous and space-inhomogeneous models whose step sets are contained in $\{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, experimentally.

 S_{10} \uparrow I \downarrow S_{01}

Theorem

Let \mathbb{K} be a field of characteristic zero, $\Delta : \mathbb{K}[x][[t]]^n \to \mathbb{K}[x][[t]]^n$ be defined by $\Delta f(x,t) = (f(x,t) - f(0,t))/x$, and let $a \in \mathbb{K}[x][[t]]^n$ and $B_i \in \mathbb{K}[x][[t]]^{n \times n}$. Then

$$f = a + t \sum_{i=0}^{\kappa} B_i \Delta^i f,$$

has a unique solution f in $\mathbb{K}[x][[t]]^n$, and its components are algebraic over $\mathbb{K}[x,t]$. Sketch of Proof

1. Rewrite the equation in terms of evaluations of derivatives of f:

$$\left(x^{k}I_{n}-t\sum_{i=0}^{k}x^{k-i}B_{i}\right)f(x,t) = x^{k}a-t\sum_{j=0}^{k-1}\left(\sum_{i=j+1}^{k}\frac{x^{k+j-i}}{j!}B_{i}\right)f^{(j)}(0,t).$$

- 2. Eliminate f(x,t) by
 - a) replacing x by a root x(t) of $det(x^kI_n t\sum_{i=0}^k x^{k-i}B_i)$, and b) multiplying the equation by elements of the co-kernel of the matrix.
- 3. Solve the resulting linear systems for the $f^{(j)}(0,t)$'s and f(x,t).

Uniqueness of the solution of the linear system for the $f^{(j)}(0,t)$'s is not necessarily guaranteed, but can be assured by a perturbation argument.

We computed at least the first 10000 terms of the corrsponding length generating functions and tried to guess a differential equation. If one was found, we also searched for an **algebraic equation**.

The classification is available at the **accompanying website**.

[1] Manfred Buchacher and Manuel Kauers. *"Inhomogeneous restricted lattice*" walks". In: Proceedings of FPSAC'19. 2019.

[2] Mireille Bousquet-Mélou and Arnaud Jehanne. "Polynomial equations with one catalytic variable, algebraic series and map enumeration". In: Journal of Combinatorial Theory, Series B. 96.5 (2006). pp. 661-704.

[3] Qing-Hu Hou and Toufik Mansour. "The kernel method and systems of functional equations with several conditions". In: Journal of Computational and Applied Mathematics 235(2011), pp. 1205-1212.

http://www.algebra.uni-linz.ac.at/people/mkauers/inhomogeneous

manfred.buchacher@jku.at