Equidistribution of Weierstrass points on a tropical curve

Harry Richman University of Michigan

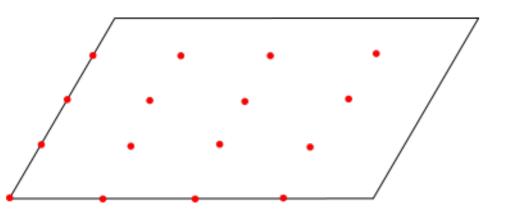
Weierstrass points

Tropical curves

The Weierstrass locus W(D) of a divisor D on an algebraic curve X consists of points of "higher than expected tangency" with hyperplanes in the projective embedding $\phi_D: X \to \mathbb{P}^r$, i.e.

 $W(D) = \{ x \in X : \phi(X) \cap H \ge (r+1)x \text{ for some hyperplane } H \}.$

On a genus 1 curve, these are the N-torsion points (up to some choice of 0) where the divisor has degree N.



A tropical curve is a metric space Γ obtained from a finite graph by assigning positive, real edge lengths. The **genus** of Γ is $g = \dim H_1(\Gamma, \mathbb{R})$.

An (effective) **divisor** D on Γ is a finite collection of "chips" placed on Γ . **Linear** equivalence means we may move any subset of chips along a cut-set of Γ , at the same speed and direction. Intuitively, this amounts to "discrete current flow".

A reduced divisor $red_q[D]$ is the unique representative linearly equivalent to D whose chips are "as close as possible" to $q \in \Gamma$.

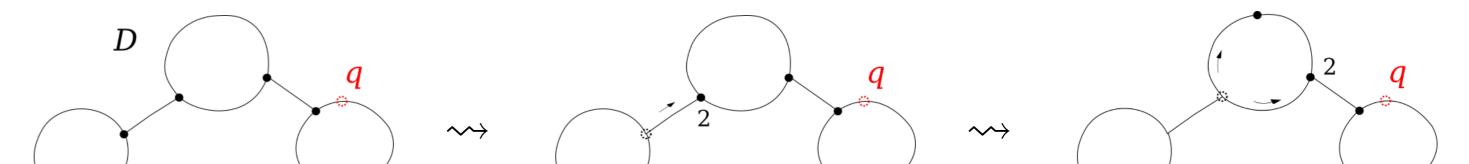


Figure 1. A complex elliptic curve with its 4-torsion points

As $N \to \infty$, N-torsion points "evenly distribute" over a complex elliptic curve.

In general, Mumford suggested we should consider Weierstrass points as higher-genus analogues of N-torsion points. This makes it natural to ask:

Problem

How do Weierstrass points distribute on a curve?

For curves over \mathbb{C} , this problem was answered by Amnon Neeman.

Theorem (Neeman, 1984)

If X is complex algebraic curve, the Weierstrass points $W(D_N)$ distribute according to the Bergman measure on X as $N \to \infty$.

We can also consider algebraic curves over a non-Archimedean field ($\mathbb{K}, \operatorname{val}: \mathbb{K}^{\times} \to \mathbb{R}$) which we assume is algebraically closed, e.g. $\mathbb{K} = \bigcup_{n \ge 1} \mathbb{C}((t^{1/n}))$. The Weierstrass points W(D) lie in $X(\mathbb{K}) \subset X^{\mathrm{an}}$.

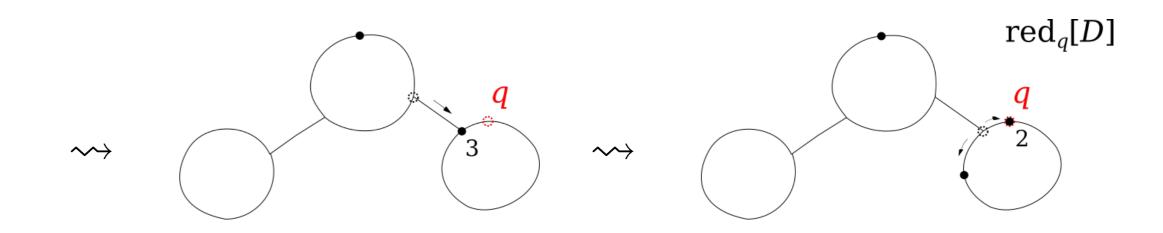


Figure 2. Reduced divisor $\operatorname{red}_q[D]$ linearly equivalent to D

algebraic curve X		tropical curve Γ
divisors $\operatorname{Div}(X)$	\rightsquigarrow	divisors $\operatorname{Div}(\Gamma)$
meromorphic functions	$\sim \rightarrow$	piecewise $\mathbb Z$ -linear functions
linear system $ D = \mathbb{P}^r$	\rightsquigarrow	$ D =$ polyhedral complex of dim $\geq r$
$rank\; r = \dim D $	\rightsquigarrow	rank $r = Baker$ -Norine rank
Table 1. Divisor theory from algebraic curves to tropical curves		

Tropical Weierstrass points

The **tropical Weierstrass locus** W(D) of a divisor on a metric graph Γ is $W(D) = \{ x \in \Gamma : E \ge (r+1)x \text{ for some } E \in |D| \}$

where $r = \deg(D) - g$ when $\deg(D) \ge 2g - 1$ (r is the Baker-Norine rank).

Theorem (Amini, 2014)

If X^{an} is Berkovich curve, the Weierstrass points $W(D_N)$ distribute according to the Zhang measure on X^{an} as $N \to \infty$.

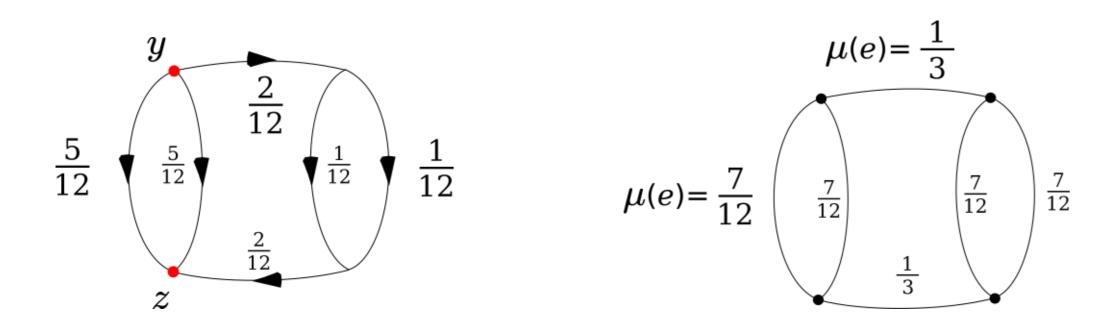
Zhang's canonical measure

We consider Γ a **resistor network** making each edge a resistor with resistance = length. Given points $y, z \in \Gamma$, we define $j_z^y : \Gamma \to \mathbb{R}$ by

 $j_z^y = \left(\begin{array}{c} \text{voltage on } \Gamma \text{ when } 1 \text{ unit of} \\ \text{current is sent from } y \text{ to } z \end{array}\right)$

and Γ is "grounded" at z. The **current** through an edge is the slope |j'| of the voltage function (Ohm's law). The canonical measure $\mu(e)$ is the "current defect"

 $\mu(e) = 1 - ($ current through e when 1 unit sent from e^- to e^+).



Equivalently, using reduced divisors

 $x \in W(D) \quad \Leftrightarrow \quad \operatorname{red}_x[D] \ge (r+1)x.$

In contrast to algebraic curves, W(D) is not always finite on Γ .

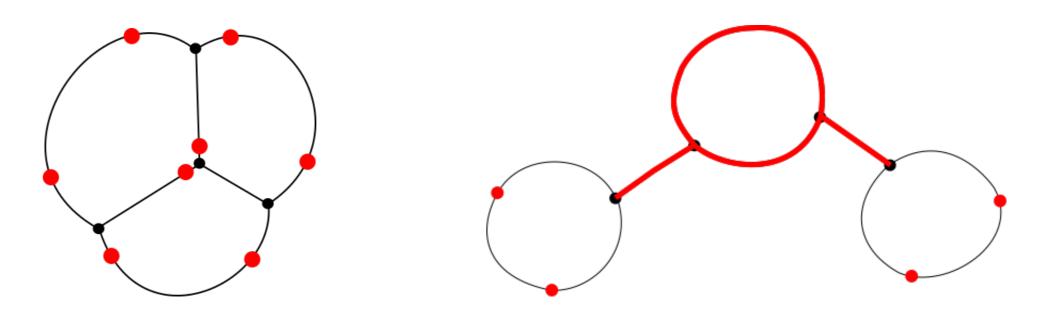


Figure 3. Weierstrass locus W(K) on two genus 3 curves

Break divisors and stability

The break divisor construction due to Mikhalkin and Zharkov can be used to fix non-finiteness of W(D). A **break divisor** is a divisor such that $\Gamma \setminus D$ is a tree^{*}. This gives a canonical effective representative for each divisor class [D] of degree g.

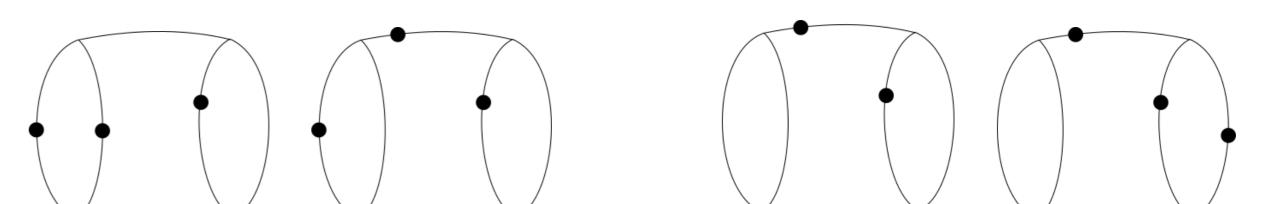


Figure 4. Current flow from y to z on Γ with unit edge lengths, and canonical measures on Γ

Theorem (R. 2019)

(i) On a tropical curve Γ , W(D) is finite for a *generic* divisor class [D]

(ii) Let $[D_N]$ be a generic divisor class of degree N. Then the Weierstrass points $W(D_N)$ distribute according to the Zhang measure μ on Γ as $N \to \infty$.

Proof idea:

$$\begin{array}{c} \text{(discrete current flow)} \xrightarrow{N \to \infty} \text{(continuous current flow)} \\ & \uparrow \\ & \downarrow \\ \#(W(D_N) \cap e) \end{array} \quad \begin{array}{c} \text{(continuous current flow)} \\ & \downarrow \\ \text{(canonical measure } \mu(e) \end{array} \end{array}$$

Figure 5. Break divisors (left) and non-break divisors (right)

We define the stable tropical Weierstrass locus $W_{\rm st}(D)$ as $W_{\rm st}(D) = \{x \in \Gamma : \ \operatorname{br}[D - (N - g)x] \ge x\} \qquad \text{where } \deg(D) = N \ge g.$

Theorem (R. 2019)

(i) If D has degree $N \ge 2g-1$ (or D is "nonspecial"), then $W_{\rm st}(D) \subset W(D)$. (ii) For any divisor D of degree $N \ge q$, $W_{\rm st}(D)$ is finite and has cardinality $\#W_{\rm st}(D) \le q(N-q+1).$

http://www-personal.umich.edu/~hrichman/

