
Delta conjectures
Michele D’Adderio ULB, Alessandro Iraci ULB & UniPi, Anna Vanden Wyngaerd ULB

Introduction

The shuffle conjecture [10], now a theorem by Carlsson and Mellit in [2], gives a combinatorial interpretation of the symmetric function ∇en (which is also the Frobenius
characteristic of the module of diagonal harmonics [12, 11]) in terms of labelled Dyck paths. In [13] the authors propose an interpretation of ∇ω(pn) in terms of labelled square
paths, known as square conjecture, now a theorem by Sergel in [15]. In [9], the authors propose an interpretation of ∆hm∆′en−k−1en in terms of (partially) labelled decorated
Dyck paths, known as (generalized) Delta conjecture. Zabrocki then conjectures a module for the Delta conjecture (i.e. the case m = 0) [16]. In our work [4], we merge the
two generalizations by suggesting an interpretation of [n−k]t

[n]t
∆hm∆en−kω(pn) in terms of partially labelled decorated square paths. Moreover, we prove several special cases, as

the 〈·, hden−d〉 case of both the generalized Delta [6] and Delta square [4], the t = 0 case [5] and the k = 0 case [7] of the generalized Delta square, and some consequences.

Symmetric functions

We denote by Λ the algebra over the fieldQ(q, t) of symmetric functions in the variables
x1, x2, . . . . We denote by en, hn and pn the elementary, complete homogeneous and
power symmetric function of degree n, respectively. We denote by ω the involution of
Λ defined by ω(en) := hn for all n.

Also, for any partition µ, we denote by sµ ∈ Λ the corresponding Schur function. It
is well-known that the symmetric functions {sµ}µ form a basis of Λ. The Hall scalar
product on Λ, denoted 〈 , 〉, can be defined by stating that the Schur functions are an
orthonormal basis.

Let H̃µ ∈ Λ denote the (modified) Macdonald polynomial indexed by the partition µ.
As the polynomials {H̃µ}µ form a basis of Λ, given a symmetric function f ∈ Λ, we
can define the Delta operators ∆f and ∆′f on Λ by setting

∆fH̃µ := f [Bµ(q, t)]H̃µ and ∆′fH̃µ := f [Bµ(q, t)− 1]H̃µ, for all µ,

where Bµ(q, t) =
∑

c∈µ q
a′µ(c)tl

′
µ(c) (a′µ(c) and l′µ(c) are the coarm and coleg of c in

µ, respectively) and the square brackets denote the plethystic substitution: if X =
x1 + x2 + . . . is a sum of monomials, then f [X ] := f (x1, x2, . . . ).

Combinatorial definitions

Definition: A partially labelled deco-
rated square path ending east is a square
lattice path ending east whose vertical steps
are labelled with non-negative integers such
that the labels are strictly increasing along
columns, there is at least one label 6= 0 la-
belling a vertical step starting from the base
diagonal, and if the path starts with a verti-
cal step, this first step’s label is 6= 0. A rise
of a square path, is a vertical step preceded
by another vertical step. Decorate some of
them with a ∗.
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Figure 1. Example of an element in LSQ(2, 6)∗1.

The set of such paths with m zero and n nonzero labels and k decorated rises is
denoted by LSQ(m,n)∗k. The subset of the Dyck paths is denoted by LD(m,n)∗k.
Definition: the area of a path LSQ(m,n)∗k equals the number of whole squares
that lie between the path and the lowest diagonal that the path touches and that are
not contained in a row containing a rise.

Definition: The dinv of a path P ∈ LSQ(m,n)∗k is the total number of

• pairs (i, j) with i < j such that the i-th and j-th vertical steps of P lie in the same
diagonal and the i-th label < the j-th label of P (starting from the bottom).
• pairs (i, j) with i < j such that the i-th vertical step of P lies one diagonal above

the j-th vertical step of P and the i-th label > the j-th label of P .
• labels 6= 0 that lie under the line x = y.
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Figure 2. The area of the path is 11.
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Figure 3. The dinv of the path is 6.

Definition: We define for each P ∈ LSQ(m,n)∗k a monomial in the variables
x1, x2, . . . : we set xP :=

∏n+m
i=1 xli(P ) where li(P ) is the label of the i-th vertical step

of P (the first being at the bottom), where we set x0 = 1.

Generalized Delta conjecture [9]

For m,n, k ∈ N, m ≥ 0 and n > k ≥ 0,

∆hm∆′en−k−1
en =

∑
D∈LD(m,n)∗k

qdinv(D)tarea(D)xD

History and state of the art

• m = k = 0 (Shuffle conjecture):
Carlsson, Mellit 2015
• m = 0 and q = 0:

Garsia, Haglund, Remmel, Yoo 2017
• m = 0 and q = 1: Romero 2017

• m = 0 and 〈·, hn−dhd〉
m = 0 and 〈·, en−dhd〉: D-VW 2017
• 〈·, en−dhd〉: D-I-VW 2018
• t = 0 or q = 0: D-I-VW 2018
• k = 0: D-I-VW 2019

Generalized Delta square conjecture [4]

For m,n, k ∈ N, m ≥ 0 and n > k ≥ 0,
[n− k]t

[n]t
∆hm∆en−kω(pn) =

∑
D∈LSQ(m,n)∗k

qdinv(D)tarea(D)xD

History and state of the art

• m = k = 0 and 〈·, en〉 (q, t-square):
Can, Loehr 2006 penguin

• m = k = 0: Sergel 2016

• 〈·, en−dhd〉: D-I-VW 2018
• q = 0: D-I-VW 2018
• k = 0: D-I-VW 2019

Towards a proof of the Delta conjectures

The proof of the Shuffle conjecture by Carlsson and Mellit relies on a refinement called
the compositional shuffle conjecture, in this fashion now a theorem. This breakthrough
permitted Sergel to deduce the proof of the Square conjecture. We very recently found
an analogous refinement of the Delta conjecture [7], which might lead to its proof.
From here on it might be possible to deduce a proof of the generalized Delta square
conjecture.
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