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PARTITIONS ASYMPTOTICS

Integer partitions A of n:

A= (5,4,2) F 11

Ny == #{\Fn}

n=0

Hardy—-Ramanujan formula [1]:

1

Nn:#{Al—n}~4n\/§

N,(l,m) :=
H{IAFn: A\ < 00N < m}

5 e = (“47)

n=0
l4+m i
_ Hzil (1—-4q")

[T, (1 —¢) T, (1 — gf)

Do ]--T -

Theorem 1 (Takécs, 1986, [2]). In the regime where |n—{fm /2| = O(y/¢m(£ + m)) (close
to the the middle), and { = ©(m),n = O(m?):

Np(m, ) ~

2m—|—£—|—2\/§ ( (m . 8)2
exp | —

3(4n — 2mr)?
w(m + £)? 2(m +¢) )

2(m + £)3

Theorem 2 (Sylvester 1878, [3], conjectured by Cayley in 1856). The numbers
N, (£, m) form a symmetric unimodal sequence

NO(ga m) < Nl(éa m) £ om0 & N|_m£/2j (éa m) = ono = Nmﬁ(& m)

Proofs: representation theory of sly [3], Hard Lefshetz Theorem and Linear Algebra
Paradigm (Stanley) [4], Combinatorial (O’Hara).

Only bounds on the difference through relation with the representation theory of
the symmetric group: The Kronecker coefficients — multiplicities of the irreducible
representations (Specht modules Sy for A = N) of the symmetric group Sy in the
tensor product of two other Sy irreducible representations via diagonal action:

g(A, i, v) :=dim Hom(Sy,S, ® S,)

Theorem 3 (Pak-Panova, 2014, [5]). The consecutive differences are equal to a Kronecker
coefficient of the symmetric group Sy,e and satisfy the bound

Vs

g((ml —n,n), (me), (mg)) = N,(¢,m) — N,_1(¢,m) > 0'004@’

where n < fm /2 and s = min{2n, (%, m?} (e.g. when £ = m then s = 2n).

Limit shape: The limit shape of an unrestricted partition, i.e. the curve which ap-
proximates most Young diagrams of A = n, was posed as a problem by Vershik
and first answered by Szalay and Turan; later Vershik and Yakubovich described
the limit shape for singly restricted partitions. The limit shape for partitions inside
a rectangle in the regime m,¢ = ©(y/n) was first described by Petrov, where it is
identified with a portion of the curve e™* 4 e™¥ = 1, the limit shape of unrestricted
partitions. Fluctuations have also been obtained; see [6] for additional historical
details and references.
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TIGHT ASYMPTOTICS OF N, (m, ()

Regime: ¢/m — A and n/m* — B for any fixed A > B > 0. “Asymptotic for-

mula” we mean: N, (¢{,m) = FORMULA(1 + o(1)), denoted with ~. By symmetry
Np(¢,m) = Npe—n (€, m) it suffices to consider only the case A > 2B > 0.

Given A > 2B > 0, define ¢, d as the unique solutions to the equations:
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A= dt — 1= =1 —1 1
,/0 1] — e—c—td dog(ec—1> ’ (1)

1 t 1 dlog(l—e <" %) 4 dilog (1—e~¢) — dilog (1—e~<~9)
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Lemma 4. For any A > 0 and B € (0,A/2) there exist unique c,d > 0 satisfy-
ing Equations (1) and (2). Moreover, for a fixed A, when B decreases from A/2 to
0 then d increases strictly from 0 to oo and c decreases strictly from log (4+1) to 1.
When B > 0 is fixed and A goes to oo then c goes to O and d goes to the root of
d* = B (dlog(1 — e~ %) — dilog (1 —e™)) .

Theorem 5 (Melczer—-Panova—Pemantle, 2018, [6]). Given m,{ and n, let A := £/m
and B := n/m? and define c,d and A as above. Let K be any compact subset of {(x,y) :
x > 2y > 0}. As m — oo with ¢ and n varying so that (A, B) remains in K,

6m[cA—|—2dB—log(1—e_c_d)]

2mm? \/A (I —e=¢)(1—ec"9)

Nn(& m) ~ ) (3)

where c and d vary in a Lipschitz manner with (A, B) € K.
4
Example 6. In the special case B = A/2, the pa-
rameters take on the elementary values
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A+1 A?(A+1)?
dzO,Cle{g(%),andA: (12—1_ )

In this case the exponent and leading constant are  »
the limits as d — 0, giving
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When A — oo, so that the restriction on the size of

the parts is removed, then ¢ = 0, results by Szek-

eres (circle method), Canfield (recursion), Romik
(Fristedt’s probability ensemble).

NAm2/2(Am, m) ~

Exponential growth of N 2(m,m) pre-
dicted by Takédcs” formula (blue, above) com-
pared to the actual exponential growth given

by Theorem 5 (red, below).

UNIMODALITY: ASYMPTOTICS OF THE DIFFERENCES

Theorem 7 (Melczer—-Panova—Pemantle, 2018, [6]). Given m,{ and n, let A := £/m
and B := n/m? and define d as above. Suppose m,{,n — oo, so that (A, B) remains in
a compact subset of {(z,y) : * > 2y > 0} and m™*|n — fm/2| — oo . Then for the
consecutive difference of N,, and via Theorem 3 for the Kronecker coefficient we have

g((mf_n_17n+1)7m£7m£) — Nn—l—l(&m)—Nn(f,m) A2 iNn(& m)
m

Remark. The condition m~!|n — Im/2| — oc is equivalent to m |A — B/2| — oo and
also to d ¢ O(m™!). It is automatically satisfied whenever (A, B) is in a compact
subset of {(z,y) : © > 2y > 0}.
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(A,B)=(1,1/k) fork=2,...,15

Limit shapes (curves) of scaled partitions as m — oo:

LOCAL CENTRAL LIMIT THEOREM

Lemma 9 (LCLT, [6]). Fix 0 < 0 < 1 and let py,...,pm be any real numbers in the
interval [6,1 — J]. Let { X} be independent reduced geometrics with respective parameters
{p;}, set Sy, = Z;”ZO X;,and T, = Z;n:() jX;. Let M,, be the covariance matrix for
(Spns Thn):
QM Bmm?
( Bmm?  ymm?
Let the means be ES,, = py, and ET,,, = v,, and set p,,(a,b) := P((Sm,Tm) = (a,b)).
Then the probability S,,, T,, concentrate around their means satisfies
1

m 7b -
Pmla.8) = S R ML/

) s Q= Mt and A, = m~* det My, = aym — B2,

1
e_ﬁQm(a’_Mmab_Vm) — O

(8)

sup m?
a,beZ

as m — oo, uniformly in the parameters {p; } in the allowed range. If the sequence (@, , by,
satisfies Q. (G — fmy b, — Vi) — 0 then

where for any matrix R we denote R(s,t) :=[s, t|R[s, t]T.

Corollary 10 (LCLT consecutive differences, [6]). Let

Qﬁ(deth)l 7z e~ 2Qa=1b=V) be the normal approximation in Equation (8).

N(a,b)

aszlé)z p(a,b+ 1) — p(a,b) — (M(a,b+ 1) — N(a,b))| = O(m™%).

Proof ideas: Tight approximations and bounds in different regions using character-
istic functions.
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Limit curve of (4, B) = (1,1/3) and random parti-
tions of size 120, 201 and 300.

derived from the Random Variables X;: |

>

et x = i/m, approximate the sum by an integral as m — oo and get the equation:

i v 1 1. [e™dte—1
[m] T /0 1 —e—c—td Ty n( e — 1 )

THE CONTINUOUS THEOREM

Theorem 5 follows from the discretized Theorem 8 after analyzing c¢,,, d,, (in partic-
ular showing their existence and uniqueness), and their relation to their continuous
analogues c and d defined as the solutions of the integral equations (1) and (2) as the
Riemann approximations of the summation equations (6). Asymptotics follow from
careful analysis of the error bounds.
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PROBABILISTIC APPROACH
Defining \g := ¢ and \,,,4+1 := 0, the gaps z; := \; — \;41 satisty
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The total area n of a partition is composed of rectangles of area jz;.

Reduced geometric distribution with parameter p: random variable X with P(X = k) =
p - g where ¢ := 1 — p. Let ¢,,, d,,, be solutions to equations (6) below, set

e o= Cm—Jdm/m
Qj =€ J / ,

pj i =1—¢q;, Ly := Zlogpj.

j=0
Tilted geometrics: Let P, be a probability law making the random variables
{X,; : 0 < j < m} independent reduced geometrics with respective parameters
pj' EXJ = 1/p] — 1 = 1/ (1 — G_Cm_dmj/m) —1 and Var (X]) = QJ/p?
Define random variables S,,, and 7},, by

S, = ZXz- ; T, = Zz’Xz- . (5)
i=0 i=1
X; = Aj — Ajq1 for our partitions \’s, so...
A inside the m x ¢ rectangle — ES,,, = fand ET,, = n — (6)
- 1 n - j/m m + 1
= z% [ o—em—dmiym ML) 2% 1 —e—em—dmi/m 2
j= j=

(1 _ e—cm—dmj/m)

e_Cm—dmj/m

(1_6—Cm—dmj/m>2 ’

) , Var (Tm)zzgnzo j2

Var (Sm)=>_71,
e_Cm—dmj/m
(1_6—Cm—dmj/m>2 ’

Theorem 8 (Discretized Theorem 5, [6]). Let c,,, and d,, satisfy equations (6). Define
the normalized entries of the covariance matrix:

Cov (Sm,Tm)=>"""¢J

U =M Var (Sp) 5 Bm = m 2Cov (Sm, Tin) ; Ym :=m >Var (T},) ,

which are O(1) as m — oo.
xpsm | —+c¢,,— m— :
2rm2/ Qo Ym — B2, P m m m?

Proof outline. The probabilities P,,, (X = x) depend only on S,,, and 7,,:

N, (l,m) ~

log Py (X =x) = ) (logp; + x;log g;)
=0

:Lm_Z(Cm—I_jE)xj:Lm_Cm Zazj - jz:%]xj

In particular, for any x satistying (4),

dn
logP,, (X =x) =Ly —cml — —n.
m

(7) the vector X satisfies the identities (4);
= (77) the pair (S,,, Tr,) is equal to (£, n);
= (297) the partition A = (A1,..., \,) defined by A; — A\j11 = X, for2 < j <
m — 1, together with \y = / — Xy and \,,, = X,,, is a partition of n fitting inside a
m X { rectangle.
Setting  p, (¢, n) =

we have

P, [(Sy = ES,, (= £), Ty, = ET) (= n)]

_ DPm (ga n) . _L_m
N,(l,m) = P, (X=x) pm(,n) exp [m ( - + e A+ de)] (7)
Now apply the LCLT Lemma 9 with p; = 1 — e~ ¢m=dmi/m, O]

A (x,y) == (0/0x) Ly (x,y), Bm(z,y) := (0/0y) Ly (x,y), then ¢, and d,, are the
solutions to A,, (¢, dr,) = ¢ and B(cp,,dy) = n/m. Let ¢ ., d. be the solutions
to A,,(c. ,d' ) ={¢and B,,(c, ,d )= (n+1)/m, Ax :== ¢ — ¢, = O(m™?2) and
Ay :=d) —d,, = O(m~?) coming from analysis of ¢, ¢, d,,, d. Taylor expansion for
L) = Ly(c,, d )around (¢,,d,) and the L, partials gives

—1

—L(Crp,diy) 4 (con + A2+ (di + Ay)(n +1)m
= —Ln(em, dm) + cml + dm(n + 1) m™" +O(m ™).

Nypi1(€,m)—Ny (£, m)

= pm (£, n) exp [—Lm + el + d—mn] [edm/m - 1} 9)

m

o6+ 1) — pon(6s )] XD | — Lo + el + d—m<n+1>] (10)

m

4 pm<€7n 4 1) (6—L§n—i—c’m£—|—d;n(n—|—1)/m - e—Lm+cm€+dm(n—|—1)/m) . (11)

Bounding each line:
d

Line (9) = N, (¢,m) (E + O(m_2)) from Equation (7) since d,,, = d + O(m™!) for
d¢ O(m™1) (ie. |A— B/2| ¢ O(m™!) as the map (4, B) — (¢, d) is Lipschitz).

Line (10) = O(m™* m?N, (£, m)) = O(m™2N,(¢,m)) since
[P (€,n + 1) — pm (£, 1)) < N(n+1)=N(n) + O(m™*) —
O (m_2 : ‘1 — e%Qm(O’l)D + O(m~*) = O(m™*), by Corollary 10, where Q,, is
the inverse of the covariance matrix of (.S, 15 ).

Line (11) S (f, n + 1) e—Lm—i—cmﬁ-l—dm(n—H)/m T
Ofm" ¢t/ m = Lntentdnn/m ) _ O(m=2N, (¢, m)),
since p,,, (£,n + 1) = p,,(¢,n) + O(m™*), where

! 1 m 1
Yy = €XP [—L;n—kc;nﬁ—kdm(n—'— )—(—Lm+cm€+d (n+ >)]—1:O(m_3).
m m

Nn(£,m) Y, edm/m 4

(9) + (10) + (11) = Nnp1(€,m) = Ny (£, m) = Ny (€, m) (




