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PARTITIONS ASYMPTOTICS

Integer partitions λ of n:
λ = (λ1 ≥ λ2 ≥ · · · ), |λ| = λ1 + · · · = n

λ = (5, 4, 2) ` 11
Nn := #{λ ` n} ∞∑

n=0

Nnq
n =
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i=1

1

1− qi
.

Hardy–Ramanujan formula [1]:

Nn = #{λ ` n} ∼ 1

4n
√

3
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(
π

√
2n

3

)
.

PARTITIONS INSIDE A RECTANGLE
Background and past results
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Theorem 1 (Takács, 1986, [2]). In the regime where |n−`m/2| = O(
√
`m(`+m)) (close

to the the middle), and ` = Θ(m), n = Θ(m2):

Nn(m, `) ∼ 2m+`+2
√

3

π(m+ `)2
exp

(
− (m− `)2

2(m+ `)
− 3(4n− 2m`)2

2(m+ `)3

)

Theorem 2 (Sylvester 1878, [3], conjectured by Cayley in 1856). The numbers
Nn(`,m) form a symmetric unimodal sequence

N0(`,m) ≤ N1(`,m) ≤ · · · ≤ Nbm`/2c(`,m) ≥ · · · ≥ Nm`(`,m)

Proofs: representation theory of sl2 [3], Hard Lefshetz Theorem and Linear Algebra
Paradigm (Stanley) [4], Combinatorial (O’Hara).
Only bounds on the difference through relation with the representation theory of
the symmetric group: The Kronecker coefficients – multiplicities of the irreducible
representations (Specht modules Sλ for λ ` N ) of the symmetric group SN in the
tensor product of two other SN irreducible representations via diagonal action:

g(λ, µ, ν) := dim Hom(Sλ,Sµ ⊗ Sν)

Theorem 3 (Pak–Panova, 2014, [5]). The consecutive differences are equal to a Kronecker
coefficient of the symmetric group Sm` and satisfy the bound

g((m`− n, n), (m`), (m`)) = Nn(`,m)−Nn−1(`,m) ≥ 0.004
2
√
s

s9/4
,

where n ≤ `m/2 and s = min{2n, `2,m2} (e.g. when ` = m then s = 2n).

Limit shape: The limit shape of an unrestricted partition, i.e. the curve which ap-
proximates most Young diagrams of λ ` n, was posed as a problem by Vershik
and first answered by Szalay and Turan; later Vershik and Yakubovich described
the limit shape for singly restricted partitions. The limit shape for partitions inside
a rectangle in the regime m, ` = Θ(

√
n) was first described by Petrov, where it is

identified with a portion of the curve e−x + e−y = 1, the limit shape of unrestricted
partitions. Fluctuations have also been obtained; see [6] for additional historical
details and references.

TIGHT ASYMPTOTICS OF Nn(m, `)

Regime: `/m→ A and n/m2 → B for any fixed A > B > 0. “Asymptotic for-
mula” we mean: Nn(`,m) = FORMULA(1 + o(1)), denoted with ∼. By symmetry
Nn(`,m) = Nm`−n(`,m) it suffices to consider only the case A ≥ 2B > 0.

Given A ≥ 2B > 0, define c, d as the unique solutions to the equations:

A =

∫ 1

0

1

1− e−c−td
dt− 1 =

1

d
log

(
ec+d − 1

ec − 1

)
− 1 , (1)

B =

∫ 1

0

t

1− e−c−td
dt− 1

2
=
d log(1−e−c−d) + dilog (1−e−c)− dilog (1−e−c−d)

d2
,

(2)

dilog (x) :=

∫ x

1

log t

1− t
dt =

∞∑
k=1

(1− x)k

k2
, ∆ :=

2Bec(ed − 1) + 2A(ec − 1)− 1

d2(ed+c − 1)(ec − 1)
−A

2

d2

Lemma 4. For any A > 0 and B ∈ (0, A/2) there exist unique c, d > 0 satisfy-
ing Equations (1) and (2). Moreover, for a fixed A, when B decreases from A/2 to
0 then d increases strictly from 0 to ∞ and c decreases strictly from log

(
A+1
A

)
to 1.

When B > 0 is fixed and A goes to ∞ then c goes to 0 and d goes to the root of
d2 = B

(
d log(1− e−d)− dilog (1− e−d)

)
.

Theorem 5 (Melczer–Panova–Pemantle, 2018, [6]). Given m, ` and n, let A := `/m
and B := n/m2 and define c, d and ∆ as above. Let K be any compact subset of {(x, y) :
x ≥ 2y > 0}. As m→∞ with ` and n varying so that (A,B) remains in K,

Nn(`,m) ∼ em[cA+2dB−log(1−e−c−d)]

2πm2
√

∆ (1− e−c) (1− e−c−d)
, (3)

where c and d vary in a Lipschitz manner with (A,B) ∈ K.

Example 6. In the special case B = A/2, the pa-
rameters take on the elementary values

d = 0 , c = log

(
A+ 1

A

)
, and ∆ =

A2(A+ 1)2

12
.

In this case the exponent and leading constant are
the limits as d→ 0, giving

NAm2/2(Am,m) ∼
√

3

Aπm2

[
(A+ 1)A+1

AA

]m
.

WhenA→∞, so that the restriction on the size of
the parts is removed, then c = 0, results by Szek-
eres (circle method), Canfield (recursion), Romik
(Fristedt’s probability ensemble).

.

Exponential growth of NBm2 (m,m) pre-

dicted by Takács’ formula (blue, above) com-

pared to the actual exponential growth given

by Theorem 5 (red, below).

UNIMODALITY: ASYMPTOTICS OF THE DIFFERENCES
Theorem 7 (Melczer–Panova–Pemantle, 2018, [6]). Given m, ` and n, let A := `/m
and B := n/m2 and define d as above. Suppose m, `, n → ∞, so that (A,B) remains in
a compact subset of {(x, y) : x ≥ 2y > 0} and m−1 |n − `m/2| → ∞ . Then for the
consecutive difference of Nn and via Theorem 3 for the Kronecker coefficient we have

g((m`−n−1, n+1),m`,m`) = Nn+1(`,m)−Nn(`,m) ∼ d

m
Nn(`,m).

Remark. The condition m−1 |n− lm/2| → ∞ is equivalent to m |A−B/2| → ∞ and
also to d /∈ O(m−1). It is automatically satisfied whenever (A,B) is in a compact
subset of {(x, y) : x > 2y > 0}.

LIMIT SHAPE

(A,B) = (1, 1/k) for k = 2, . . . , 15 (A,B) = (5/k, 1/k) for k = 2, . . . , 15 Limit curve of (A,B) = (1, 1/3) and random parti-
tions of size 120, 201 and 300.

Limit shapes (curves) of scaled partitions as m→∞: 1 = (1− e−c)ed(A−y) + e−ce−dx derived from the Random Variables Xi: ↓

λi = `− (X0 +X1 + · · ·+Xi−1) =⇒ E[λi] = `−
∑i−1
j=0(1/pj − 1)

Set x = i/m, approximate the sum by an integral as m→∞ and get the equation:

y := E
[
λi
m

]
= A+ x−

∫ x

0

1

1− e−c−td
dt = A+ x− 1

d
ln

(
exd+c − 1

ec − 1

)
.

PROBABILISTIC APPROACH
Defining λ0 := ` and λm+1 := 0, the gaps xi := λi − λi+1 satisfy

m∑
i=0

xi = ` ;

m∑
i=0

ixi = n . (4)

λ1
λ2

λi
λi+1

λm

ixi

1x1

xi

x1

`

m

x0

The total area n of a partition is composed of rectangles of area jxj .

Reduced geometric distribution with parameter p: random variable X with P(X = k) =
p · qk where q := 1− p. Let cm, dm be solutions to equations (6) below, set

qj := e−cm−jdm/m , pj := 1− qj , Lm :=

m∑
j=0

log pj .

Tilted geometrics: Let Pm be a probability law making the random variables
{Xj : 0 ≤ j ≤ m} independent reduced geometrics with respective parameters
pj . EXj = 1/pj − 1 = 1/

(
1− e−cm−dmj/m

)
− 1 and Var (Xj) = qj/p

2
j .

Define random variables Sm and Tm by

Sm :=

m∑
i=0

Xi ; Tm :=

m∑
i=1

iXi . (5)

Xj = λj − λj+1 for our partitions λ’s, so...

λ inside the m× ` rectangle =⇒ ESm = ` and ETm = n =⇒ (6)

` =

m∑
j=0

1

1− e−cm−dmj/m
− (m+ 1) ,

n

m
=

m∑
j=0

j/m

1− e−cm−dmj/m
− m+ 1

2
,

Var (Sm)=
∑m

j=0

e−cm−dmj/m(
1− e−cm−dmj/m

)2 ,Var (Tm)=
∑m

j=0 j
2 e−cm−dmj/m

(1−e−cm−dmj/m)
2 ,

Cov (Sm,Tm)=
∑m

j=0 j
e−cm−dmj/m

(1−e−cm−dmj/m)
2 ,

Theorem 8 (Discretized Theorem 5, [6]). Let cm and dm satisfy equations (6). Define
the normalized entries of the covariance matrix:

αm := m−1Var (Sm) ; βm := m−2Cov (Sm, Tm) ; γm := m−3Var (Tm) ,

which are O(1) as m→∞.

Nn(`,m) ∼ 1

2πm2
√
αmγm − β2

m

exp

{
m

(
−Lm
m

+ cm
`

m
+ dm

n

m2

)}
.

Proof outline. The probabilities Pm(X = x) depend only on Sm and Tm:

logPm(X = x) =
m∑
j=0

(log pj + xj log qj)

= Lm −
m∑
j=0

(
cm + j

dm
m

)
xj = Lm − cm

 m∑
j=0

xj

− dm
m

 m∑
j=0

jxj

 .

In particular, for any x satisfying (4),

logPm(X = x) = Lm − cm`−
dm
m
n .

(i) the vector X satisfies the identities (4);
⇐⇒ (ii) the pair (Sm, Tm) is equal to (`, n);
⇐⇒ (iii) the partition λ = (λ1, . . . , λm) defined by λj − λj+1 = Xj for 2 ≤ j ≤
m − 1, together with λ1 = ` − X0 and λm = Xm, is a partition of n fitting inside a
m× ` rectangle.
Setting pm(`, n) := Pm [(Sm = ESm(= `), Tm = ETm(= n)] we have

Nn(`,m) =
pm(`, n)

Pm(X = x)
= pm(`, n) exp

[
m

(
−Lm
m

+ cmA+ dmB

)]
(7)

Now apply the LCLT Lemma 9 with pj = 1− e−cm−dmj/m.

THE CONTINUOUS THEOREM 5
Theorem 5 follows from the discretized Theorem 8 after analyzing cm, dm (in partic-
ular showing their existence and uniqueness), and their relation to their continuous
analogues c and d defined as the solutions of the integral equations (1) and (2) as the
Riemann approximations of the summation equations (6). Asymptotics follow from
careful analysis of the error bounds.
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LOCAL CENTRAL LIMIT THEOREM
Lemma 9 (LCLT, [6]). Fix 0 < δ < 1 and let p0, . . . , pm be any real numbers in the
interval [δ, 1 − δ]. Let {Xj} be independent reduced geometrics with respective parameters
{pj}, set Sm :=

∑m
j=0Xj , and Tm :=

∑m
j=0 jXj . Let Mm be the covariance matrix for

(Sm, Tm):

Mm =

(
αmm βmm

2

βmm
2 γmm

3

)
, Qm := M−1m , and ∆m := m−4 detMm = αmγm − β2

m.

Let the means be ESm = µm and ETm = νm and set pm(a, b) := P((Sm, Tm) = (a, b)).
Then the probability Sm, Tm concentrate around their means satisfies

sup
a,b∈Z

m2

∣∣∣∣pm(a, b)− 1

2π(detMm)1/2
e−

1
2Qm(a−µm,b−νm)

∣∣∣∣→ 0 (8)

asm→∞, uniformly in the parameters {pj} in the allowed range. If the sequence (am, bm)
satisfies Qm(am − µm, bm − νm)→ 0 then

pm(am, bm) =
1

2π
√

∆mm2

(
1 +O

(
m−3/2

))
,

where for any matrix R we denote R(s, t) := [s , t]R [s , t]T .

Corollary 10 (LCLT consecutive differences, [6]). Let N (a, b) :=
1

2π(detM)1/2
e−

1
2Q(a−µ,b−ν) be the normal approximation in Equation (8).

sup
a,b∈Z

∣∣p(a, b+ 1)− p(a, b)−
(
N (a, b+ 1)−N (a, b)

)∣∣ = O(m−4).

Proof ideas: Tight approximations and bounds in different regions using character-
istic functions.

CONSECUTIVE DIFFERENCES
Theorem 7 follows from Equation (7) and Corollary 10. Let

Lm(x, y) :=
m∑
j=0

log(1− e−x−yj/m) .

Am(x, y) := (∂/∂x)Lm(x, y), Bm(x, y) := (∂/∂y)Lm(x, y), then cm and dm are the
solutions to Am(cm, dm) = ` and B(cm, dm) = n/m. Let c′m, d′m be the solutions
to Am(c′m, d

′
m) = ` and Bm(c′m, d

′
m) = (n + 1)/m, ∆x := c′m − cm = O(m−2) and

∆y := d′m−dm = O(m−2) coming from analysis of cm, c, dm, d. Taylor expansion for
L′m := Lm(c′m, d

′
m) around (cm, dm) and the Lm partials gives

−Lm(c′m, d′m) + (cm + ∆x)` + (dm + ∆y)(n + 1)m−1

= −Lm(cm, dm) + cm` + dm(n + 1)m−1 + O(m−3).

Nn+1(`,m)−Nn(`,m)

= pm(`, n) exp

[
−Lm + cm`+

dm
m
n

] [
edm/m − 1

]
(9)

+ [pm(`, n+ 1)− pm(`, n)] exp

[
−Lm + cm`+

dm
m

(n+ 1)

]
(10)

+ pm(`, n+ 1)
(
e−L

′
m+c′m`+d

′
m(n+1)/m − e−Lm+cm`+dm(n+1)/m

)
. (11)

Bounding each line:

Line (9) = Nn(`,m)

(
d

m
+O(m−2)

)
from Equation (7) since dm = d + O(m−1) for

d /∈ O(m−1) (i.e. |A−B/2| /∈ O(m−1) as the map (A,B)→ (c, d) is Lipschitz).
Line (10) = O(m−4 · m2Nn(`,m)) = O(m−2Nn(`,m)) since
[pm(`, n+ 1)− pm(`, n)] ≤ |N (`, n+ 1)−N (`, n)| + O(m−4) =

O
(
m−2 ·

∣∣∣1− e 1
2Qm(0,1)

∣∣∣) + O(m−4) = O(m−4), by Corollary 10, where Qm is
the inverse of the covariance matrix of (Sm, Tm).
Line (11) = pm(`, n + 1) e−Lm+cm`+dm(n+1)/m ψm = Nn(`,m)ψm e

dm/m +
O(m−4 edm/m e−Lm+cm`+dmn/m ψm) = O(m−3Nn(`,m)),
since pm(`, n+ 1) = pm(`, n) +O(m−4), where

ψm := exp

[
−L′m+ c′m`+

d′m(n+ 1)

m
−
(
−Lm + cm`+

dm(n+ 1)

m

)]
−1 = O(m−3).

(9) + (10) + (11) =⇒ Nn+1(`,m)−Nn(`,m) = Nn(`,m)

(
d

m
+O(m−2)

)
. �


