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Schubert calculus and matrix Schubert varieties

In 1889 Schubert introduced a method for studying problems in enumerative geometry.
This method can be formulated in modern terms using intersection theory, e.g. via
calculations in the cohomology ring of the �ag variety Fl(n) := GL(n,C)/B, where
B ⊆ GL(n) is a Borel subgroup. The ring H∗(Fl(n)) has a Schubert basis {[Xw]}w∈Sn
determined by Schubert varieties Xw, the closures of the left B-orbits on Fl(n).

The Schubert variety Xw can be described by rank conditions. Let A[i][j] be the upper
left i× j corner of a matrix A, and view w ∈ Sn as a permutation matrix. Then

Xw = {A ∈ GL(n) : rank(A[i][j]) ≤ rank(w[i][j]) ∀i, j}/B.

The orthogonal and symplectic subgroups O(n) and Sp(n) of GL(n) also decompose
Fl(n) into �nitely many orbits. Their closures, denoted X̂y and X̂FPF

z , are indexed by
involutions y and �xed-point-free (fpf) involutions z in Sn, respectively.

LetM(n) be the set of n×n matrices. By analogy, we have the matrix Schubert variety

MXw = {A ∈M(n) : rank(A[i][j]) ≤ rank(w[i][j]) ∀i, j}.

Using an explicit map Z[x1, . . . , xn] � H∗(Fl(n)) due to Borel, one can represent the
class [X ] of a subvariety X ⊆ Fl(n) by a (non-unique) polynomial. By contrast, if
V is a representation of the group T ⊆ GL(n) of diagonal matrices, the equivariant
cohomology ring H∗T (V ) is isomorphic to Z[x1, . . . , xn], and we may identify the class
[X ] ∈ H∗T (V ) of a T -stable subvariety X ⊆ V with a unique polynomial.

Schubert polynomials and pipedreams

The Schubert polynomials Sw are (non-unique) polynomial representatives for [Xw] ∈
H∗(Fl(n)) and unique representatives for [MXw]T ∈ HT (M(n)). They can be de�ned
as generating functions of combinatorial objects called pipedreams, which we explain by
example. The permutation 1432 has �ve pipedreams:

RP(1432) =


, , , , .


The key properties are that the wires of each pipedream are permuted by 1432 as they
travel from left to top and that no pair of strands crosses twice. Note that pipedreams
are determined by set the of +'s contained in {(i, j) ∈ N2 : i + j ≤ n}. Let RP(w)
be the set of pipedreams for w.

De�nition: (Billey-Jockusch-Stanley '93)

Sw =
∑

D∈RP(w)

∏
(i,j)∈D

xi.

For example, we have

S1432 = x22x3 + x21x3 + x21x2x1x2x3 + x1x
2
2,

where each monomial (from left to right) comes from the corresponding pipedream.

(Skew) Symmetric matrix Schubert varieties

Wyser and Yong have de�ned polynomial representatives Ŝy and ŜFPF
z for [X̂y] and

[X̂FPF
z ] in H∗(Fl(n)). Let SMn be the set of n × n symmetric matrices over C, and

let SSMn be the set of n× n skew symmetric matrices.

De�nition: The symmetric matrix Schubert variety associated to the involution y is

MX̂y = {A ∈ SMn : rank(A[i][j]) ≤ rank(y[i][j]) for i, j ∈ [n]}.
The skew-symmetric matrix Schubert variety associated to the fpf involution z is

MX̂FPF
z = {A ∈ SSMn : rank(A[i][j]) ≤ rank(z[i][j]) for i, j ∈ [n]}

Theorem 1

The class [MX̂y] in HT (SMn) equals 2κ(y)Ŝy, where x ∈ T acts by x.A = xAx.
Similarly, the class [MX̂FPF

z ] in HT (SSMn) equals ŜFPF
z .

Remarks:

Theorem 2 generalizes many classical results on degeneracy loci, e.g, Salmon 1862,
Segre 1900, Giambelli 1906, Joze�ak-Pragacz 1980

Work by Fink, Rajchgot and Sullivant relates varieties over SMn and SSMn cut
out by north-east rank conditions to Type B/C Schubert calculus.

A Billey-Jockusch-Stanley formula

A pipedream D is symmetric if (i, j) ∈ D ⇔ (j, i) ∈ D. It is almost symmetric if

if (i, j) ∈ D then (j > i) ∈ D (here i < j);

if (j, i) ∈ D and (i, j) /∈ D, the strands crossing at (j, i) also pass through (i, j).

For example, the last two pipedreams of 1432 above are almost symmetric.

Let n = {(i, j) ∈ N2 : 0 < i ≤ j, i + j ≤ n} and 6=
n = {(i, j) ∈ n : i 6= j}. For y

an involution and z a fpf involution in Sn, de�ne

IP(y) = {D ∩ n : D ∈ RP(y) and D is almost symmetric} and
FP(z) = {D ∩ 6=

n : D ∈ RP(z) is symmetric with (i, i) ∈ D for 1 ≤ i ≤ n/2}.
Let κ(y) be the number of 2-cycles in y.

Theorem 2

Ŝy = 2κ(y)
∑

D∈IP(y)

∏
(i,j)∈D

2−δij(xi + xj) and ŜFPF
z =

∑
D∈FP(z)

∏
(i,j)∈D

(xi + xj).

Example: Ŝ1432 = 2
(
(x2 + x1)(x3 + x1) + (x2 + x1)2

−1(x2 + x2)
)
.

Proof of Theorem 2 by Example

For y = 35142, we have IP(y) =


,

 , IP(53241) =


 and IP(45312) =


 .

Then Ŝy =
Ŝ53241 + Ŝ45312

x1 + x3
=

4x1x2(x1 + x2)(x1 + x3)((x1 + x4) + (x2 + x3))

x1 + x3
= 4x1x2(x1 + x2)(x1 + x4) + 4x1x2(x1 + x2)(x2 + x3) = 2κ(y)

∑
D∈IP(y)

∏
(i,j)∈D

2−δij(xi + xj).

For arbitrary y, the �rst equality is a recurrence on the Ŝy's, the second is a base case for dominant involutions and the �nal equality requires combinatorial proof.

Connecting the theorems

Our proof of Theorem 1 relies on passing from an O(n)-orbit on GL(n)/B to a B-orbit
on GL(n)/O(n) whose closure in SMn is MX̂y. Geometric considerations then force
Ŝy to be a sum of monomials in variables (xi + xj) as in Theorem 2.

Set-theoretically, MX̂y is the vanishing locus of an ideal Îy generated by minors of a
symmetric matrix Xn = (xij)i≥j∈[n]. For example, Î2143 = 〈x11, detX3〉. Following

Knutson-Miller, we conjecture that Îy is prime and that it has a primary decomposition
of Îy whose top-dimensional components correspond to IP(y).
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