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Introduction

We extend the study of characteristic elements for real hyperplane arrangements started in [1] to the context of a�ne arrangements. These elements of the Tits algebra, de�ned
by a restriction on their value on the simple characters of the algebra, determine the characteristic polynomial of the arrangement under each �at. Each arrangement possesses
many characteristic elements, and the interest is in constructing particular elements from which speci�c information about the characteristic polynomial can be extracted. We
construct a characteristic element canonically associated to each arrangement in terms of intrinsic volumes. As an application, we derive a beautiful result of Klivans and Swartz
[2] relating the coe�cients of the characteristic polynomial to the intrinsic volumes of the chambers.

Hyperplane arrangements

Let A be a �nite collection of a�ne hyperplanes in a �nite-dimensional real vector space
V . We let Π[A] denote the set of �ats and Σ[A] the set of faces of A. Both form
ranked posets ordered by inclusion. In addition, Π[A] is a join-semilattice with maximum
element > = V . The support of a face F is the smallest �at s(F ) that contains it.

The characteristic polynomial of A is

χ(A, t) :=
∑

Y

µ(Y,>) trk(Y),

where µ is the Mobius function of Π[A]. The sum is over all �ats.

The arrangement under a �at X is the following collection of hyperplanes in ambient
space X

AX = {H ∩ X | H ∈ A, X 6⊆ H, H ∩ X 6= ∅}.

The Tits algebra

The set Σ[A] is a semigroup under the Tits product. Informally, the product of two
faces F and G is the �rst face you encounter after moving a small positive distance
from an interior point of F to a interior point of G, as illustrated below.
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Figure 1. Product of faces in two arrangements of rank 2.

The product satis�es s(FG) = s(F ) ∨ s(G), where ∨ is the join operation of Π[A].

Let k be a �eld. The linearization kΣ[A] of this semigroup is the Tits algebra of A. We
let HF denote the basis element of kΣ[A] associated to the face F of A. The irreducible
representations of kΣ[A] are one-dimensional and indexed by �ats. The character of the
representation corresponding to a �at X is given by

χ
X
(w) =

∑
s(F )≤X

wF , where w =
∑
F

wFHF .

Theorem: kΣ[A] is a unital algebra. The unit element is

υ =
∑
F

(−1)rk(F )HF ,

with F running over the set of essentially bounded faces of A.

Characteristic elements

Let t ∈ k. An element w ∈ kΣ[A] is characteristic of parameter t if for each �at X

χ
X
(w) = trk(X).

Characters are multiplicative, therefore we have.

Lemma: If u and v are characteristic elements of parameters s and t, then uv is
characteristic of parameter st.

Möbius inversion implies the following result.

Lemma: An element w ∈ kΣ[A] is characteristic of parameter t if and only if for
every �at X , ∑

F : s(F )=X

wF = χ(AX, t).

Let A′ be a subarrangement of A. There is a morphism

f : Σ[A]→ Σ[A′]
that sends a face F of A to the minimal face of A′ that contains it. We also denote by
f the linear extension f : kΣ[A]→ kΣ[A′].
Lemma: Let w be a characteristic element for A of parameter t 6= 0, then
t− cork(A′)f (w) is characteristic for A′ of the same parameter.

Applications

Recursion: Let A′ be a subarrangement of A. Note that f (F ) is a chamber of A′
if and only if F is not contained in any hyperplane of A′. We conclude the following.

tcork(A′)χ(A′, t) =
∑

X

χ(AX, t)

where the sum is taken over all �ats X of A not contained in any hyperplane of A′. In
particular, if rk(A \ {H}) = rk(A), then

χ(A, t) = χ(A \ {H}, t)− χ(AH, t).

An identity of Kung [3]: Take characteristic elements u and v of parameters s
and t. Since s(FG) = > if and only s(F ) ∨ s(G) = >, we have

χ(A, st) =
∑
C

(uv)C =
∑

X∨Y=>

χ(AX, s)χ(AY, t)

Denote by AX the subarrangement of hyperplanes of A that contain X. An application
of the previous identity gives

χ(A, st) =
∑

X

trk(X)χ(AX, s)χ(AX, t).

Zaslavsky's formula [4]: The value of the character of a one-dimensional repre-
sentation on the unit element is 1. Consequently, υ is characteristic of parameter 1. We
conclude that

(−1)rk(A)χ(A, 1) = (−1)rk(A)
∑
C

υC

counts the number of essentially bounded chambers of A.
Intrinsic elements

For each k = 0, . . . , n, let vk(P ) be the proportion of volume of space occupied by points
that map to a k-dimensional face of P under the nearest point projection πP : Rn→ P .

P rec(P )
α v2(P ) = α/2π

v1(P ) = 1/2

v0(P ) = 1/2− α/2π

Figure 2. The k-the dimensional intrinsic volumes of P depends only on its recession cone.

vk(P ) is the k-th dimensional intrinsic volume of P . Each vk is a valuation: whenever
P ∪Q is convex, vk(P ∪Q) = vk(P ) + vk(Q)− vk(P ∩Q).

Let A be an arrangement and d the dimension of any minimal face of A. The intrinsic
element of parameter t for A is de�ned by

νt =
∑
F

(−1)dim(F )
( dim(F )∑

k=d

(−1)kvk(F )tk−d
)
HF .

Theorem: The intrinsic element νt is characteristic of parameter t.

Corollary [2]: The coe�cient of tk in the characteristic polynomial of A is

(−1)rk(A)−k
∑
C

vk+d(C).
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