DESCENT REPRESENTATIONS OF GENERALIZED COINVARIANT ALGEBRAS

Kyle Meyer

University of California, San Diego

kpmeyer@ucsd.edu

http://www.math.ucsd.edu/ kpmeyer/Home.html

Classical Coinvariant Algebras

- Let $\mathbb{Q}[x_1, \ldots, x_n]$ be the polynomial ring over \mathbb{Q} in *n* variables.
- The symmetric group \mathfrak{S}_n acts on $\mathbb{Q}[x_1, \ldots, x_n]$ by permuting the indices.
- Polynomials invariant under this action are called **symmetric**.
- The invariant ideal I_n is the ideal generated by all symmetric functions with zero constant term.
- The coninvariant algebra R_n is then

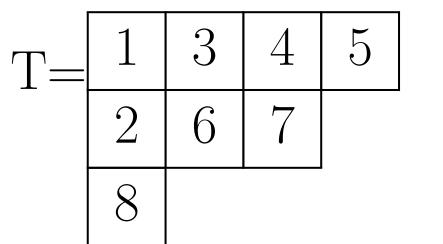
$$R_n := \frac{\mathbb{Q}[x_1, \dots, x_n]}{I_n} = \frac{\mathbb{Q}[x_1, \dots, x_n]}{\langle e_n, e_{n-1}, \dots, e_1 \rangle}.$$

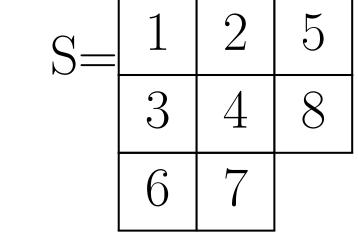
Where e_i is the *i*th elementary symmetric function

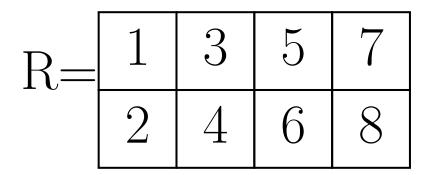
• The quotient R_n is a graded \mathfrak{S}_n -module whose structure is governed by standard Young tableaux

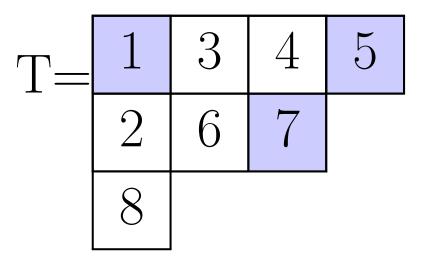
Theorem [Chevalley] \mathfrak{S}_n -module isomorphism type of R_n

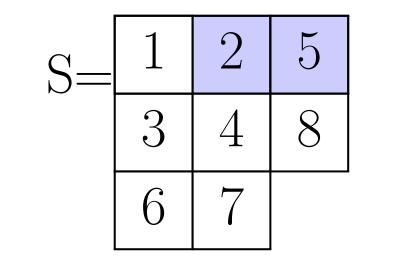
Standard Young Tableaux: Descents, Major Index, and Shape

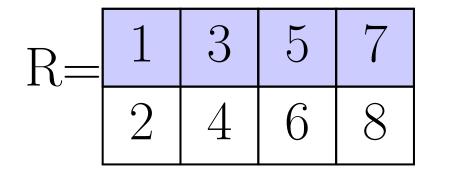












Theorem [Lusztig-Stanley] Graded \mathfrak{S}_n -module isomorphism type of R_n

$$grFrob(R_n;q) = \sum_{T \in SYT(n)} q^{maj(T)} s_{shape(T)}$$

$Des(T) = \{1, 5, 7\}$	$Des(S) = \{2, 5\}$	$Des(R) = \{1, 3, 5, 7\}$
des(T)=3	des(S)=2	des(R)=4
Maj(T) = 1 + 5 + 7 = 13	Maj(S) = 2 + 5 = 7	Maj(R) = 1 + 3 + 5 + 7 = 16
shape(T) = (4,3,1)	shape(S) = (3, 3, 2)	$\operatorname{shape}(\mathbf{R}) = (4,4)$

Generalized Coinvariant Algebras

• Motivated by the Delta Conjecture in the field of Macdonald polynomials a generalized coinvariant algebra $R_{n,k}$ was defined by Haglund, Rhoades, and Shimozono as follows:

 $R_{n,k} = \frac{\mathbb{C}[x_1, \dots, x_n]}{\langle e_n, e_{n-1}, \dots, e_{n-k+1}, x_1^k, x_2^k, \dots, x_n^k \rangle}.$

• The quotient $R_{n,k}$ is a graded \mathfrak{S}_n -module whose structure is governed by ordered set partitions of n with k blocks.

Refining by Partitions

- Dominance order: for two partitions of $n, \lambda \leq \mu$ if $\sum_{i=1}^{k} \lambda_i \leq \sum_{i=1}^{k} \mu_i$ for all k.
- Letting $\lambda(m)$ be the exponent partition of a monomial m, define

 $P_{\leq \mu} := \operatorname{span}\{m \in \mathbb{C}[x_1, \dots, x_n] : \lambda(m) \leq \mu\}$

- $P_{\triangleleft \mu} := \operatorname{span}\{m \in \mathbb{C}[x_1, \dots, x_n] : \lambda(m) \triangleleft \mu\}$
- Let the projections of $P_{\leq \mu}$ and $P_{\triangleleft \mu}$ onto R_n be $Q_{\leq \mu}$ and $Q_{\triangleleft \mu}$, and then define

Generalized Coinvariant Algebra Results

Theorem [Haglund, Rhoades, Shimozono] Graded and ungraded \mathfrak{S}_n -module isomorphism types of $R_{n,k}$

 $R_{n,k} \cong_{\mathfrak{S}_n} \mathbb{Q}[\mathcal{OP}_{n,k}],$ where $\mathcal{OP}_{n,k}$ is the set of ordered set partitions of n with k blocks.

$$grFrob(R_{n,k};q) = \sum_{T \in SYT(n)} q^{maj(T)} \begin{bmatrix} n - des(T) - 1 \\ n - k \end{bmatrix}_q s_{shape(T)}$$

Refinement Results

Theorem [Adin, Brenti, Roichman] $R_{n,\lambda} = 0$ unless $\lambda_i - \lambda_{i+1} = 0, 1$ for all *i*, and $\lambda_n = 0$, and in this case

$$Frob(R_{n,\lambda}) = \sum_{\mu \vdash n} c_{\lambda,\mu} s_{\mu}$$

where $c_{\lambda,\mu} =: \{T \in SYT(\mu) : Des(T) = Des(\lambda)\}$ **Theorem** [M] $R_{n,k,\lambda} = 0$ unless $\lambda_1 < k$, $\lambda_n = 0$, and $\lambda_i - \lambda_{i+1} = 0, 1$ for i > n - k, and in this case

 $R_{n,\lambda} := Q_{\leq \lambda} / Q_{\triangleleft \lambda}$

• Then

$R_n = \bigoplus R_{n,\lambda}$

• Furthermore the degree d component of R_n is isomorphic to

 $\bigoplus_{\lambda \vdash d} R_{n,\lambda}$

• We can define $R_{n,k,\lambda}$ analogously, and it will refine the grading of $R_{n,k}$.

Example Calculations

Example for $R_{n,\lambda}$: Let n = 8, $\lambda = (4, 4, 3, 2, 2, 1, 1)$, and $\mu = (3, 3, 2)$

 $Des(\lambda) = \{2, 3, 5, 7\}$

1	2	7		1	2	5
3	5	8		3	6	7
4	6		•	4	8	

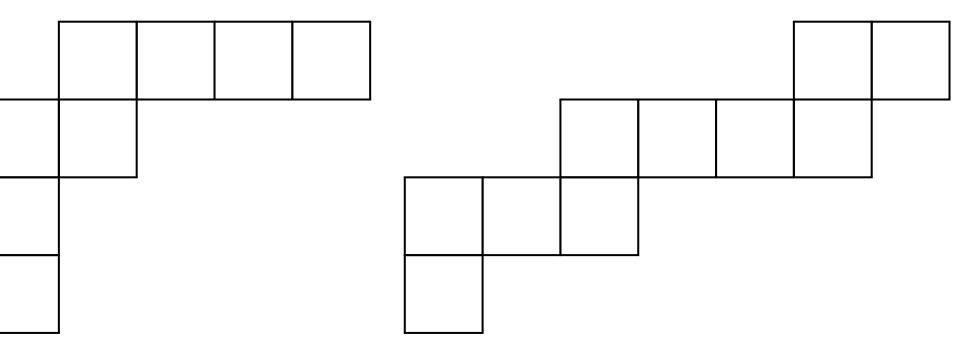
 $c_{\lambda,\mu} = 2$

Example for $R_{n,k,\lambda}$: Let $n = 8, k = 6, \lambda = (5, 5, 2, 2, 1, 1, 1)$, and $\mu = (4, 3, 1)$ $Des_{3,8}(\lambda) = \{4,7\}, Des(\lambda) = \{2,4,7\}$

 $Frob(R_{n,k,\lambda}) = \sum_{\mu \vdash n} c_{\lambda,\mu} s_{\mu}$ $c_{\lambda,\mu} = |\{T \in SYT(\mu) : Des_{n-k+1,n}(\lambda) \subseteq Des(T) \subseteq Des(\lambda)\}|$

Ribbon Tableaux and Crystals

• Using the Robinson-Schensted-Knuth algorithm, this result can be expressed in terms of ribbon tableaux, which are connected skew tableaux that contain no 2×2 boxes.



• Specifically, for each λ , there is a partition ρ , and a ribbon shape γ , such that

 $\operatorname{Frob}(R_{n,k,\lambda}) = s_{\gamma} h_{\rho}.$

The ρ is determined by the differences between optional descents, and the γ is determined by the differences between mandetory descents. For example if we had optional descents $\{1,3\}$, and mandetory descents $\{6,7,9\}$, we would have $\rho = (2, 1)$ and γ would be the left ribbon shape above.

• Benkart, Colmenarejo, Harris, Orellana, Panova, Schilling, and Yip defined a crystal structure on ordered multiset partitions using the minimal statistic such that when graded by minimal, the character of their crystal is

 $(rev_q \circ \omega)grFrob(R_{n,k}).$

1	2	4	7	1	2	4	7	1	2	6	7	1	2	3	4	
3	5	6		3	6	8		3	4	8		5	6	7		
8				5				5				8				
$c_{\lambda,\mu} = 2$	4								-							

• This crystal is built up from smaller crystals that have characters equal to

 $s_{\gamma}e_{
ho}$

for a ribbon shape γ and a partition ρ .

• Therefore up to the right choice of λ , $R_{n,k,\lambda}$ corresponds to these smaller crystal.

References

References

[1] Ron Adin, Francesco Brenti, and Yuval Roichman. Descent representations and multivariate statistics. Transactions of the American Mathematical Society, 357(8):3051–3082, 2005.

[2] Georgia Benkart, Laura Colmenarejo, Pamela E Harris, Rosa Orellana, Greta Panova, Anne Schilling, and Martha Yip. A minimaj-preserving crystal on ordered multiset partitions. Advances in Applied Mathematics, 95:96–115, 2018.

[3] James Haglund, Brendon Rhoades, and Mark Shimozono. Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. arXiv preprint arXiv:1609.07575, 2016.

[4] Kyle P Meyer. Descent representations of generalized coinvariant algebras. arXiv preprint arXiv:1711.11355, 2017.

(1)